Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized iPSC-derived cardiomyocytes
Ontology highlight
ABSTRACT: Human pluripotent stem cell-derived cardiomyocytes (CMs) are a promising tool for cardiac cell therapy. To optimize graft cells for cardiac reconstruction, we compared the engraftment efficiency of intramyocardially-injected undifferentiated-induced pluripotent stem cells (iPSCs), day4 mesodermal cells, and day8, day20, and day30 purified iPSC-CMs after initial differentiation by tracing the engraftment ratio (ER) using in vivo bioluminescence imaging. This analysis revealed the ER of day20 CMs was significantly higher compared to other cells. Transplantation of day20 CMs into the infarcted hearts of immunodeficient mice showed significant functional improvement. Moreover, the imaging signal and ratio of Ki67-positive CMs at 3 months post injection indicated engrafted CMs proliferated in the host heart. Although this graft growth reached a plateau at 3 months, histological analysis confirmed progressive maturation from 3 to 6 months. These results suggested that day20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts. Differentiated cells, N=10 Undifferentiated pluripotent stem cells, N=1 Heart samples, N=6
ORGANISM(S): Homo sapiens
SUBMITTER: Yoshinori Yoshida
PROVIDER: E-GEOD-60634 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA