Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPKMEF2 signaling [ChIP-seq]
Ontology highlight
ABSTRACT: Identfification of MEF2A target genes using ChIP-exo in skeletla muscle and primary cardiomyocytes. Identfification of MEF2A target genes using ChIP-exo and RNA-seq in skeletal muscle and primary cardiomyocytes. MEF2 plays a profound role in the regulation of transcription in cardiac and skeletal muscle lineages. To define the overlapping and unique MEF2A genomic targets, we utilized ChIP-exo analysis of cardiomyocytes and skeletal myoblasts. Of the 2783 and 1648 MEF2A binding peaks in skeletal myoblasts and cardiomyocytes, respectively, 294 common binding sites were identified. Genomic targets were compared to differentially expressed genes in RNA-seq analysis of MEF2A depleted myogenic cells. MEF2A target genes were identified in 48 hr DM C2C12 myoblasts cells and primary cardiomyocytes using ChIP-exo. Binding profiles on MEF2A in each cell type were compared. Cross sectional-analysis between ChIP-exo identified targets and RNA-seq analysis of MEF2A deplted myoblasts was also done.
ORGANISM(S): Rattus norvegicus
SUBMITTER: John McDermott
PROVIDER: E-GEOD-61204 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA