Radiation-Induced T Cell Lymphoma: Carbon ion- vs. Gamma Ray-Induced
Ontology highlight
ABSTRACT: Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume. These mice were then monitored for the remainder of their lifespan and a large number of T cell lymphomas were analysed, alongside those arising in mice exposed to equivalent doses of standard Cs137 gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikaros, Pten, Trp53 and Bcl11b genes we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. 32 unique tumours (12 gamma ray-induced, 20 carbon ion-induced) each with sex-matched reference DNA
ORGANISM(S): Mus musculus
SUBMITTER: Benjamin Blyth
PROVIDER: E-GEOD-61315 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA