Project description:ChIP-seq of H3K27me3 in rat peripheral nerve was used to identify sites of polycomb repression associated with genes in Schwann cells, which constitute the majority of cells in peripheral nerve. H3K27me3 ChIP samples were prepared from rat sciatic nerve and then sequenced. Inputs for these ChIP samples have previously been submitted as samples GSM1541282 and GSM1541283 in Series GSE63103
Project description:ChIP-seq of H3K27acetylation in sham and injured nerve 2 independent ChIP samples each for Sham and Injury conditions, with respective inputs
Project description:Eukaryotic RNA polymerase II (Pol II) has evolved an array of heptad repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the carboxy-terminal domain (CTD) of the large subunit (Rpb1). Differential phosphorylation of Ser2, Ser5, and Ser7 in the 5M-bM-^@M-^Y and 3M-bM-^@M-^Y regions of genes coordinates the binding of transcription and RNA processing factors to the initiating and elongating polymerase complexes. Here, we report phosphorylation of Thr4 by Polo-like-kinase-3 in mammalian cells. ChIPseq analyses indicate an increase of Thr4-P levels in the 3M-bM-^@M-^Y region of genes occurring subsequently to an increase of Ser2-P levels. A Thr4/Ala mutant of Pol II displays a lethal phenotype. This mutant reveals a global defect in RNA elongation, while initiation is largely unaffected. Since Thr4 replacement mutants are viable in yeast we conclude that this amino acid has evolved an essential function(s) in the CTD of Pol II for gene transcription in mammalian cells. In this study, we investigated the function and ChIPseq genome-wide profiling of Thr4P residue (using the 6D7 antibody) of the Pol II CTD in Raji human B cells in comparison with either total Pol II profiling (N20 antibody, santa-cruz sc-899x), Ser5P CTD (3E8) or Ser2P (3E10) profiling in WT Raji cells. In another set of experiments, we also analysed total Pol II profiling (using an HA tag at the N-terminus of RPB1 and HA antibody Abcam ab9110) when endogenous enzyme is shut down by alpha-amanitin and replaced by either a recominant Pol II with 48 consensus repeats of the CTD (con48) or a mutated version where Thr4 residues were replaced by Ala (Thr4-Ala).In total 6 experimental sets (Pol IIt, Ser5P, Ser2P, Thr4P, con48, Thr4-Ala) were generated for our analysis and for each a biological replicate was performed. Biological replicates were merged when the data showed comparable signal noise ratio. Otherwise a unique replicate, showing the best noise ratio, was chosen for further analysis although the second replicate (for Ser2P and Thr4-Ala experiments). An input control (genomic DNA extracted after reverse crosslinking of the nuclear chip extracts) was performred and used for substraction to the ChIP experiments. One specific input material was used for wt cells, one for con48 and one for Thr4-Ala. Our data were processed to generate final wig files using our in house analysis pipeline essentially as described in Koch et al, (2011) NSMB 18 (8) p956.In brief, after alignment, sequence tags are: (i) artefact removed, (ii) elongated to an in silico optimized actual size of the initial fragments , (iii) input substracted, (iv) merged if applicable, (v) scaled for all experiments to correct for variation of tag number in between experiments. Several of the raw data files were no longer available.
Project description:The Prep1 (Pknox1) homeodomain transcription factor is essential at multiple stages of embryo development. In the E11.5 embryo trunk, we previously estimated that Prep1 binds about 3,300 genomic sites at a highly specific decameric consensus sequence, mainly governing basal cellular functions. We now show that in embryonic stem (ES) cells Prep1 binding pattern only partly overlaps that of the embryo trunk, with about 2,000 novel sites, highlighting a change of targets between embryonic differentiated v. embryonic stem cells. RNA-seq identifies about 1800 genes down-regulated in Prep1- /- ES cells which belong to gene ontology categories not enriched in the E11.5 Prep1i/i differentiated embryo, including in particular the Wnt and Fgf pathways. Indeed, we find aberrant Wnt and Fgf expression levels in the Prep1-/- ES cells which agrees with a deficient embryoid bodies (EBs) differentiation. Re-establishment of the Prep1 level rescues the phenotype. [ChIP-Seq] Examination of genome-wide Prep1 binding in mouse ES cells using ChIP-seq and Illumina GAII sequencing. [RNA-Seq] Examination of gene expression in wild type and Prep1-/- mouse ES cells using RNA-seq and Illumina GAII sequencing.
Project description:The forkhead transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in cancer. Increased levels of FOXM1 are associated with both poor prognosis and oestrogen receptor (ERalpha) status in primary breast cancer. In this study, we map FOXM1 binding genome wide in both ERalpha-positive (MCF-7) and -negative (MDA-MB-231) breast cancer cells. We identify a common set of FOXM1 binding events at cell cycle-regulating genes, but in addition, in MCF-7 cells we find a high level of concordance with ERalpha-binding regions. FOXM1 binding at these co-binding sites is dependent on ERalpha binding, as depletion of ER protein levels reduced FOXM1 binding. FOXM1 interacts directly with both ERalpha co-activator CARM1 and is required for H3 arginine methylation at the ERalpha complex. Inhibition of FOXM1 activity with the ligand thiostrepton resulted in decreased FOXM1 binding at cca. 1400 sites genome wide and reduced expression of genes correlated with poor prognosis in ERalpha-positive tumour samples. These data demonstrate a novel role for the forkhead protein FOXM1 as an ERalpha cofactor and provide insight into the role of FOXM1 in ERalpha-positive breast cancer. The FOXM1-binding sites were mapped by ChIP-Seq in MCF-7 and MDA-MB-231 cells. Cells were treated either with thiostrepton, a FOXM1 inhibitor, or with DMSO (as control). Four replicates were performed in MCF7 cells and two replicates in MDA-MB-231 cells.
Project description:Jmjd3 is trimethyl H3K27 specific demethylase required for M2 macrophage polarization. Genomic fragments obtained from wild-type and Jmjd3-/- mouse macrophages were immunoprecipitated with anti H3K27me3 Ab, and deep sequencing was performed. wild-type and Jmjd3-/- macrophages
Project description:Attachment of the ubiquitin (UB) peptide to proteins via the E1-E2-E3 enzymatic machinery regulates diverse biological pathways, yet identification of the substrates of E3 UB ligases remains a challenge. We overcame this challenge by constructing an “orthogonal UB transfer (OUT) cascade with yeast E3 Rsp5 to enable the exclusive delivery of an engineered UB (xUB) to Rsp5 and its substrate proteins. The OUT screen uncovered new Rsp5 substrates in yeast, such as Pal1 and Pal2 that are partners of endocytic protein Ede1, and chaperones Hsp70-Ssb, Hsp82, and Hsp104 that counteract protein misfolding and control self-perpetuating amyloid aggregates (prions), resembling those involved in human amyloid diseases. We showed that prion formation and effect of Hsp104 on prion propagation are modulated by Rsp5. Overall, our work demonstrates the capacity of OUT to deconvolute the complex E3-substrate relationships in crucial biological processes such as endocytosis and protein assembly disorders through protein ubiquitination.
Project description:Zoo-ChIP: Functional analysis of experimentally determined combinatorial transcription factor binding in multiple mammalian species