Difference in gene expression between WT (Col-0) and atxrn4-3 mutant under non-stress and heat stress condition
Ontology highlight
ABSTRACT: Arabidopsis 5’-3’ exoribonuclease, AtXRN4, a homolog of yeast Xrn1p, functions in degradation of uncapped RNAs after de-capping step. While Xrn1p-dependent on plant XRN4’s targets for degradation is still limited. For understanding biological function of AtXRN4, we tested survivability of atxrn4 mutants under heat stress. Our results showed that atxrn4 mutants increased survival rate under short-term degradation is a main mRNA decay in yeast, knowledge heat stress compared with WT plants. Our microarray and mRNA decay assay showed that loss of AtXRN4 function caused reduction of mRNA degradation of heat shock factor A2 (HSFA2) and ethylene response factor 1 (ERF1). HSFA2 has been known as a key regulator in heat acclimation, was found as a target for AtXRN4 for degradation at non-stress condition. Heat stress applied on atxrn4-3 hsfa2 double mutant severely lacked heat tolerance phenotype of atxrn4 mutant. These results suggest that AtXRN4-mediated mRNA degradation linked to suppress heat acclimation. In the study here, 2 week-old WT and atxrn4-3 mutant plants were exposure to non-stress (22oC) and heat-stress (37oC, 1 h). Custom microarray was applied to acquire expression profile of 32788 Arabidopsis genes. 3 biological repeats of WT (non-stress), WT(heat stress), atxrn4-3 (non-stress) and atxrn4-3 (heat stress) were used for microarray analysis
ORGANISM(S): Arabidopsis thaliana
SUBMITTER: Motoaki Seki
PROVIDER: E-GEOD-66369 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA