Project description:Iron is an essential cofactor for a wide range of cellular processes. Previous studies have shown that siderophore-mediated uptake and intracellular handling of iron are crucial for virulence of Aspergillus fumigatus. Here we show that the bzip-type transcription factor HapX plays a crucial role in the transcriptional remodeling required for adaption to iron starvation in this opportunistic fungal pathogen. HapX was found to be interconnected in a negative feed-back loop with the previously identified iron regulator SreA: SreA repressed expression of hapX during iron sufficiency and HapX repressed sreA during iron starvation. Genome-wide transcriptional profiling and analysis of selected metabolites (protophorphyrine IX, siderophores and amino acids) indicated extensive metabolic remodeling in response to iron starvation. HapX was found to participate in both, repression and activation of genes during iron starvation. HapX was in particular required for repression of iron-dependent and mitochondrial-localized activities including respiration, TCA cycle, amino acid metabolism, iron-sulfur-cluster biosynthesis and heme biosynthesis. Pathways positively affected by HapX included production of siderophores and the ribotoxin and major allergen AspF1. Analysis of the free amino acid pool revealed HapX-dependent coordination of the production of siderophores with the supply of its precursor ornithine. Consistent with the hapX expression pattern, HapX-deficiency was deleterious with respect to growth rate and conidiation during iron depleted but not iron-replete conditions. HapX-deficiency caused significant attenuation of virulence in a murine model aspergillosis underlining that A. fumigatus faces iron starvation in the host and that the HapX-dependent metabolic reprogramming is therefore crucial for virulence. A. fumigatus 293 and hapX mutants were grown in the presence and absence of iron and in cultures shifted from no iron to iron-containing conditions after 1 h incubation. Hybridizations were performed with biological replicates for wt vs hapX +/- iron. For the iron-shift experiments, there were biological replicates for wt in both conditions and for hapX in -iron but there was only a single biological sample for hapX iron-shift sample. All hybs were performed with flip-dye pairs.
Project description:Dendritic cells (DC) play an important role in host immunity by acting as a bridge between the innate and adaptive immune systems. They are antigen presenting cells that obtain microbial antigens by direct phagocytosis of the microbe or by cross presentation of antigens taken up from the surrounding environment. Monocyte derived DC were co-cultured with resting conidia of Aspergillus fumigatus at an MOI of 5 for 12 hours, cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to micro-arrays, whole genome Aspergillus fumigatus array (JCVI) and a custom immune array for DC. The genes up-regulated by DC in the presence of A. fumigatus indicated that the cells were producing a pro-inflammatory response. There was an increase in IL8 expression over time confirming its association with germ tube emergence. Over the course of the experiment there was increased expression of 210 genes by A. fumigatus, GO analysis indicated significant up-regulation of the following biological processes: fermentation, drug transport, pathogenesis, transport, tyrosine catabolism and response to oxidative stress. There were two clusters of temporally regulated genes showing up regulation before 6hr and after 6 hrs. This may be related to the increased mortality exhibited in DC at 6h. The initial analysis of A. fumigatus gene expression in response to DC shows similarity to its response to neutrophils with an up-regulation in catabolism and response to oxidative stress. A. fumigatus AF293 cells were grown in the presence and absence of human dendritic cells for 0h - 12h. Hybridizations were performed with biological replicates and flip-dye pairs.
Project description:Deletion of AcuM caused attenuated virulence in mouse models of Aspergillosis, we carried out the microarry to figure out pathways have been changed to affect the virulence. Transcriptional profiling of Aspergillus fumigatus mycelium comparing mutant ?acuM with wild type Af293, and complemented strain ?acuM ::acuM with mutant ?acuM . Three time points comparison under RPMI: 8 hour, 18 hour, 24 hour. Biological replicates: 2, independently grown and harvest. One replicate per array.
Project description:Listeria monocytogenes strains classify into at least three distinct phylogenetic lineages. Correlations exist between lineage classification and source of bacterial isolation, e.g., human clinical and food isolates usually classify into either lineage I or II, however, human clinical isolates are over-represented in lineage I while food isolates are over-represented in lineage II. σB, a transcriptional regulator previously demonstrated to contribute to environmental stress response and virulence in L. monocytogenes lineage II strains, was hypothesized to provide differential capabilities for L. monocytogenes survival in various niches (e.g., food vs. human clinical). To determine if σB contributions to stress response and virulence differ across diverse L. monocytogenes strains, ΔsigB mutations were created in strains from lineages I, II, IIIA, and IIIB. Paired parent and ΔsigB mutant strains were tested for acid and oxidative stress survival, Caco-2 cell invasion efficiency, and virulence using the guinea pig listeriosis infection model. Parent and ΔsigB mutant strain transcriptomes were compared using whole-genome expression microarrays. σB contributed to virulence in each strain. However, while σB contributed significantly to acid and oxidative stress survival and Caco-2 cell invasion in lineage I, II, and IIIB strains, σB contributions were not significant for these phenotypes in the lineage IIIA strain. A core set of 63 genes was positively regulated by σB in all four strains; different total numbers of genes were positively regulated by σB in each strain. Our results suggest that σB universally contributes to L. monocytogenes virulence, but specific σB-regulated stress response phenotypes vary among strains.
Project description:Listeria monocytogenes is well known to have the ability to survive and grow under a variety of stress conditions. The ability to survive and grow under osmotic stress conditions in particular appears to be important for both growth in certain foods and food associated environments as well as for host infection. To characterize the contributions of transcriptional regulators important for stress response and virulence (i.e., Sigma B - M-OM-^CB and PrfA), we initially analyzed three L. monocytogenes parent strains and isogenic mutants ( delta sigB, delta prfA, and delta sigB delta prfA), representing different serotypes and lineages, for their ability to grow in BHI with 11% NaCl (1.9M) at 25M-BM-0C. No significant differences were observed in terms of growth between the parent strains and their respective mutants lacking prfA (i.e. delta prfA, and delta sigB delta prfA mutant strains). While for all strains, the delta sigB mutant showed a prolonged lag phase as compared to the parent strains, maximum growth rates were only reduced for the delta sigB mutant of lineage I and IV strains. Interestingly, for the serotype 1/2b strain, the delta sigB mutant reached a higher maximum cell density than the parent strain or the delta prfA mutant. Caco-2 intestinal epithelial cells invasion assays and hemolytic activity assays showed a significant role for M-OM-^CB in the former and for PrfA in the latter. To initially explore the mechanism that may contribute to the extended lag phase in the delta sigB mutant, microarray was performed to compare transcript levels between the lineage I, serotype 1/2b, parent strain and its isogenic delta sigB mutant in lag phase at 25M-BM-0C in the presence of 11% NaCl. Microarray data showed significant lower and higher transcript levels for 135 and 173 genes, respectively, in the parent strain as compared to the delta sigB strains. Overall, 51 of the 173 M-OM-^CB up-regulated genes had previously been found among the 249 M-OM-^CB-dependent genes identified in a microarray study conducted in stationary phase cells, indicating that up to 122 genes may be transcribed in a M-OM-^CB-dependent manner during lag phase under salt stress. Notable genes that showed higher transcript levels in the parent strain include inlD (encoding an internalin protein that may be involved in virulence), sigH (encoding an alternative M-OM-^C factor), glpK (encoding a glycerol kinase) and resD (encoding a two-component response regulator ResD); while, genes that showed lower transcript levels in the parent strain include dnaK (encoding a dihydroxyacetone kinase), groES (encoding a class I heat-shock protein GroES), grpE (encoding a co-chaperone GrpE) and fri (encoding a non-heme iron-binding ferritin). These data showed that although PrfA does not contribute to growth under osmotic stress at 25M-BM-0C, M-OM-^CB does contribute to survival of L. monocytogenes under high salt conditions. Moreover, the M-OM-^CB-dependent transcriptome of L. monocytogenes lag phase cells under salt stress was characterized and includes previously identified as well as novel M-OM-^CB-dependent genes, including a number of stress response and virulence-associated genes. Independent RNA isolations were performed for one wildtype (lineage I) and M-NM-^TsigB strains from cells grown to lag phase. Three biological replicates were used in competitive whole-genome microarray experiments. For each set of hybridizations, RNA from a L. monocytogenes wildtype strain was hybridized with RNA from its isogenic M-NM-^TsigB null mutant.
Project description:3 replicates of WT and srbA knockout strains grown on GMM plates, harvested spores and inoculated 5x10^5 spores/ml in 300 ml of LGMM. Cultures incubated for 10h at 28C and then shifted for 2h to 37C (both at 200rpm) so they are just germinating at the start of the treatment. Cultures were shifted to hypoxia (37C, 200rpm) and incubated for 1hr. Samples were collected by pouring them over a filter paper in a Buechner funnel and snap froze the cells immediately in liquid nitrogen, and stored the cells at -80C and lyophilized all tissue at the same time after all samples were collected. RNA extraction was then done simultaneously with all time points.
Project description:Proteus mirabilis is a primary cause of complicated urinary tract infections (UTI). Surprisingly, iron acquisition systems have been poorly characterized in this uropathogen despite the urinary tract being iron-limited. In this report the transcriptome of strain HI4320, cultured under iron limitation, was examined using microarray analysis. Of genes upregulated at least 2-fold, 45 were statistically significant and comprise 21 putative iron-regulated systems. Two of these systems, PMI0229-0239 and PMI2596-2605, are organized in operons and appear to encode siderophore biosynthesis genes. Five microarrays comparing P. mirabilis HI4320 cultured in LB broth to P. mirabilis cultured in LB broth + 15 uM Desferal (an iron chelator) were analyzed. All five arrays are biological replicates; arrays #2 and 4 are dye swaps.
Project description:The enteric bacterium Proteus mirabilis is a common cause of complicated urinary tract infections. In the study, microrarrays were used to analyze P. mirabilis gene expression in vivo from experimentally infected mice. Urine was collected at 1, 3, and 7d postinfection, and RNA was isolated from bacteria in the urine for transcriptional analysis. Across 9 microarrays, 471 genes were upregulated and 82 were downregulated in vivo compared to in vitro broth culture. Genes upregulated in vivo encoded MR/P fimbriae, urease, iron uptake systems, amino acid and peptide transporters, pyruvate metabolism, and portions of the TCA cycle. Flagella were downregulated. Ammonia assimilation gene glnA (glutamine synthetase) was repressed in vivo while gdhA (glutamate dehydrogenase) was upregulated in vivo. Contrary to our expectations, ammonia availability due to urease activity in P. mirabilis did not drive this gene expression. A gdhA mutant was growth-deficient in minimal medium with citrate as the sole carbon source, and loss of gdhA resulted in a significant fitness defect in the mouse model of urinary tract infection. Unlike Escherichia coli, which represses gdhA and upregulates glnA in vivo and cannot utilize citrate, the data suggest that P. mirabilis uses glutamate dehydrogenase to monitor carbon-nitrogen balance, and this ability contributes to the pathogenic potential of P. mirabilis in the urinary tract. Voided urine from female CBA/J mice infected with Proteus mirabilis was collected and pooled in RNA stabilizing reagent (RNAprotect). Urine was collected at 1, 3, and 7 d postinfection. RNA was isolated from urine and log-phase LB cultures, converted to cDNA, and labeled with CyDye. Three arrays were completed per time point (9 arrays total). Slides were scanned with a ScanArray Express microarray scanner (Perkin Elmer) at 10 μm resolution and quantified using ScanArray Express software. Resulting data were normalized by total intensity and median spot intensities were identified using MIDAS (v. 2.22) software.
Project description:Listeria monocytogenes strain F2365 was the first strain representative of serotype 4b (lineage I) to be sequenced in 2004, suggesting it could become the model organism for this serotype, which is associated with most human outbreaks of listeriosis worldwide to date. F2365 itself is an outbreak strain involved in the Mexican-style soft cheese outbreak in California in 1985. In this study we show through phenotypic and transcriptomic analysis that L. monocytogenes strain F2365 has reduced ability to respond to stress due to the absence of a functional M-OM-^CB-dependent stress response system. F2365 shows no M-oM-^AM-3B-dependent ability to survive acid or oxidative stress nor M-oM-^AM-3B-dependent ability to infect Caco-2 epithelial cell in vitro or guinea pigs in vivo. Therefore, there is substantial evidence that F2365 is an atypical strain and is not a suitable representative of outbreak-associated serotype 4b strains. Independent RNA isolations were performed for F2365 and M-NM-^TsigB strains from cells grown to early stationary phase. Three biological replicates were used in competitive whole-genome microarray experiments. For each set of hybridizations, RNA from a L. monocytogenes wildtype strain was hybridized with RNA from its isogenic M-NM-^TsigB null mutant.