Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcription profiling of E. coli under 121 conditions to generate a compendium of gene expression


ABSTRACT: Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. Experiment Overall Design: To explore pathways of particular importance to antibiotic resistance, we assayed 121 conditions using 266 microarrays, including more than 50 genetic perturbations (overexpression or knockout) during norfloxacin-induced DNA damage response, overexpression of the ccdB toxin, and growth to stationary phase on low and high glucose

ORGANISM(S): Escherichia coli

SUBMITTER: Timothy Gardner 

PROVIDER: E-GEOD-6836 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles.

Faith Jeremiah J JJ   Hayete Boris B   Thaden Joshua T JT   Mogno Ilaria I   Wierzbowski Jamey J   Cottarel Guillaume G   Kasif Simon S   Collins James J JJ   Gardner Timothy S TS  

PLoS biology 20070101 1


Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and app  ...[more]

Similar Datasets

2007-01-22 | GSE6836 | GEO
2024-06-05 | GSE32030 | GEO
2010-06-04 | E-GEOD-16940 | biostudies-arrayexpress
2010-06-04 | GSE16940 | GEO
2020-03-03 | GSE136165 | GEO
2010-05-26 | E-GEOD-10090 | biostudies-arrayexpress
| PRJEB29576 | ENA
| PRJEB63200 | ENA
2016-09-27 | PXD003880 | Pride
2016-01-12 | PXD003317 | Pride