CD147 and downstream ADAMTSs promote the tumorigenesis of Kaposi sarcoma-associated herpesvirus
Ontology highlight
ABSTRACT: The Kaposiâs Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposiâs Sarcoma (KS), which preferentially arise in immunocompromised patients but lack of effective therapeutic options. We have previously shown that KSHV or viral protein LANA can upregulate the glycoprotein CD147 (Emmprin) to induce primary endothelial cell invasiveness, which also requires PI3K/Akt and MAPK activation of VEGF production. In the current study, we first time identify the global network controlled by CD147 in KSHV-infected endothelial cells using Illumina microarray analysis. Among these downstream genes, ADAMTS1 and 9, two specific metalloproteases are strongly expressed in AIDS-KS tissues and contributed to KSHV-infected cell invasiveness through regulation of related cytokines production and respective receptors expression. By using a nude mice KS-like model, we found that targeting CD147 and downstream ADAMTSs proteins significantly suppressed KSHV-related tumorigenesis in vivo, which is potentially through impairing extracellular matrix (ECM) formation in tumor microenvironment. Taken together, we think that targeting CD147 and related proteins may represent a promising therapeutic strategy against KSHV-related malignancies. HUVEC cells were infected by KSHV or transduced by a CD147 recombinant adenoviral vector and the gene expression signature was compared to respective controls
ORGANISM(S): Homo sapiens
SUBMITTER: Zhiqiang Qin
PROVIDER: E-GEOD-69067 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA