Project description:It has widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes, whereas the other forms, such as N6-methyladenine, primarily exist in prokaryotes and only a few eukaryotes. Herein, we demonstrated the surprising presence of N6-methyladenine in mammalian genomes, especially, mouse embryonic stem cells. This modification is enriched at histone variant H2A.X-deposited genomic regions in wild type embryonic stem cells. Our work also showed that a previously unknown DNA demethylase, Alkbh1, is the major demethylase for N6-methyladenine in embryonic stem cells. Increase of N6-methyladenine levels in Alkbh1 deficient cells leads to silencing of genes that regulate embryonic development. Surprisingly, genes located on the X-chromosome, but not the Y-chromosome or autosomes are preferentially silenced by N6-methyladenine. Strikingly, N6-methyladenine in Alkbh1 deficient cells are specifically deposition at young, full-length subfamilies of LINE1 transposons that are strongly enriched on the X chromosome. Furthermore, N6-methyladenine deposition on LINE1s pattern is inversely correlated with their evolutionary age. The deposition of N6-methyladenine results in epigenetic silencing of such L1s, which are otherwise actively transcribed in wild type embryonic stem cells, and the neighboring enhancers and genes. Furthermore, N6-methyladenine induced-silencing resists gene activation signals during embryonic stem cell differentiation. Thus, N6-methyladenine adopts a new function in epigenetic silencing in evolution, distinct from its role in gene activation in other organisms. In summary, our results demonstrate that N6-methyladenine unexpectedly constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. First, we used a native-ChIP approach to enrich for DNA molecules residing in H2A.X-deposition regions in mouse ESCs as previously described. Then, co-purified DNA molecules from WT or KO ESCs were subject to SMRT sequencing and data analysis for DNA modifications (Pacific Biosciences). H2A.X Native ChIP coupling with SMRT sequencing (separate the short "S" and long "L" part to sequencing)
Project description:It has widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes, whereas the other forms, such as N6-methyladenine, primarily exist in prokaryotes and only a few eukaryotes. Herein, we demonstrated the surprising presence of N6-methyladenine in mammalian genomes, especially, mouse embryonic stem cells. This modification is enriched at histone variant H2A.X-deposited genomic regions in wild type embryonic stem cells. Our work also showed that a previously unknown DNA demethylase, Alkbh1, is the major demethylase for N6-methyladenine in embryonic stem cells. Increase of N6-methyladenine levels in Alkbh1 deficient cells leads to silencing of genes that regulate embryonic development. Surprisingly, genes located on the X-chromosome, but not the Y-chromosome or autosomes are preferentially silenced by N6-methyladenine. Strikingly, N6-methyladenine in Alkbh1 deficient cells are specifically deposition at young, full-length subfamilies of LINE1 transposons that are strongly enriched on the X chromosome. Furthermore, N6-methyladenine deposition on LINE1s pattern is inversely correlated with their evolutionary age. The deposition of N6-methyladenine results in epigenetic silencing of such L1s, which are otherwise actively transcribed in wild type embryonic stem cells, and the neighboring enhancers and genes. Furthermore, N6-methyladenine induced-silencing resists gene activation signals during embryonic stem cell differentiation. Thus, N6-methyladenine adopts a new function in epigenetic silencing in evolution, distinct from its role in gene activation in other organisms. In summary, our results demonstrate that N6-methyladenine unexpectedly constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. First, we used different histone antibodies to enrich for DNA molecules with histone modification or specific variant in mouse ESCs as previously described Native-ChIP methods. Then, co-purified DNA molecules from WT or KO ESCs were subject to HiSeq2000 sequencing and data analysis for histone modification or variant peaks. Native ChIP coupling with HiSeq sequencing
Project description:It has widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes, whereas the other forms, such as N6-methyladenine, primarily exist in prokaryotes and only a few eukaryotes. Herein, we demonstrated the surprising presence of N6-methyladenine in mammalian genomes, especially, mouse embryonic stem cells. This modification is enriched at histone variant H2A.X-deposited genomic regions in wild type embryonic stem cells. Our work also showed that a previously unknown DNA demethylase, Alkbh1, is the major demethylase for N6-methyladenine in embryonic stem cells. Increase of N6-methyladenine levels in Alkbh1 deficient cells leads to silencing of genes that regulate embryonic development. Surprisingly, genes located on the X-chromosome, but not the Y-chromosome or autosomes are preferentially silenced by N6-methyladenine. Strikingly, N6-methyladenine in Alkbh1 deficient cells are specifically deposition at young, full-length subfamilies of LINE1 transposons that are strongly enriched on the X chromosome. Furthermore, N6-methyladenine deposition on LINE1s pattern is inversely correlated with their evolutionary age. The deposition of N6-methyladenine results in epigenetic silencing of such L1s, which are otherwise actively transcribed in wild type embryonic stem cells, and the neighboring enhancers and genes. Furthermore, N6-methyladenine induced-silencing resists gene activation signals during embryonic stem cell differentiation. Thus, N6-methyladenine adopts a new function in epigenetic silencing in evolution, distinct from its role in gene activation in other organisms. In summary, our results demonstrate that N6-methyladenine unexpectedly constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. First, we used N6mA or 5mC antibody to enrich for DNA molecules with DNA modification in mouse ESCs as previously described methods. Then, co-purified DNA molecules from WT or KO ESCs were subject to HiSeq2000 sequencing and data analysis for DNA modification sites. DNA IP coupling with HiSeq sequencing
Project description:The emerging picture of transcriptional regulation is one of unexpected complexity. It is now clear that single transcription factors control hundreds, if not thousands, of direct targets by binding their genomic loci, but it is not understood how many of these are major players and how many are supporting cast. To address this, we leverage a well-characterized developmental network in Arabidopsis and map genome-wide binding of related proteins in multiple tissues. The transcription factor APETALA2 (AP2) has numerous functions, including roles in floral organ identity, seed development and stem cell maintenance. We focus on the role of AP2 in the floral transition and map direct targets on a genome-wide scale. We show that ap2 mutants flower early in long and short days, and that AP2 binds to many loci, most prominently floral pathway integrators, microRNAs and floral organ identity genes, many of which exhibit AP2-dependent transcription. Opposing, logical effects are evident in AP2 binding to two developmental microRNA genes that control AP2 expression, with AP2 positively regulating miR156 and negatively regulating miR172, forming a complex direct feedback loop, which also included all but one of the AP2-like miR172 target clade members. We also seek conserved targets by comparing the genome-wide direct target repertoire of AP2 with that of SCHLAFMÜTZE (SMZ), another member of the AP2-like miR172 target clade that shares partial redundancy, as evidenced by a hexuple mutant for the entire clade that flowered extremely early. Clear similarities and divergence are exposed in the AP2 and SMZ direct target repertoires. Finally, using an inducible expression system, we demonstrate that AP2 has dual molecular roles. It functions both as a transcriptional activator and repressor, directly inducing the expression of the floral repressor AGAMOUS-LIKE 15 (AGL15), and directly repressing the transcription of floral activators like SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). ChIP-Seq of two biological replicates for ATH-AP2 and respective control samples
Project description:Epigenetic mechanisms including DNA methylation, non-coding RNAs and histone modifications control gene expression. Studies suggest that a father's lifetime experiences can be transmitted to his offspring to affect development and health. The mechanisms underlying such epigenetic inheritance are unknown. A potential route for paternal transmission is the unique chromatin composition of spermatozoa. Unlike somatic cells and oocytes, most nucleosomes in sperm are replaced with protamine nucleoproteins. The role of residual nucleosomes, residing at gene regulatory sequences, for epigenetic control of embryonic development is unknown. Here we generated a transgenic mouse model in which over-expression of the histone H3 lysine 4 (H3K4) demethylase LSD1/KDM1A during spermatogenesis alters H3K4 methylation in sperm. Strikingly, KDM1A over-expression in one generation causes severe embryonic defects in non-transgenic descendants spanning three subsequent generations. We show for the first time that correct histone methylation homeostasis during spermatogenesis is critical for offspring development and survival over multiple generations. Identification of H3K4me2 and nucleosome occupancies in sperm of wildtype mice, KDM1A transgenic mice and their non-transgenic littermates.
Project description:Here we demonstrate the generation of stable induced trophoblast stem cells (iTSCs) from fibroblasts by the transient expression of Gata3, Eomes and Tfap2c. Transcriptome and methylome analyses and functional assays such as hemorrhagic lesion formation and placenta contribution suggested a high degree of conversion. Careful examination of the reprogramming process indicated that the cells did not go through a transient pluripotent state. Detect and compare different H2A.X deposition patterns in ES cells,MEFs and iTSC and TS cells, with Illumina HiSeq 2000
Project description:With the advent of the induced pluripotent stem cell (iPSC) technology, how to distinguish the developmental potentials of the iPSC clones with molecular approaches becomes an imperative issue. Herein, we demonstrated that histone variant H2A.X plays an unexpected role in distinguishing the developmental potentials of iPSC. We showed that H2A.X is specifically targeted to and negatively regulates extra-embryonic lineage gene expression in embryonic stem cell (ESCs) and therefore, it prevents trophectoderm (TE) lineage differentiation under inductive conditions. ESC-specific H2A.X deposition and functions are faithfully recapitulated in the iPSC lines that support the development of “all-iPS” animals. In iPSC lines that fail to support embryonic development, aberrant H2A.X depositions result in upregulation of extra-embryonic lineage genes and predisposition to extra-embryonic tissue differentiation. In summary, our work has revealed novel epigenetic mechanisms for maintaining cell lineage commitment, which can be used to distinguish the quality of the iPSC lines. Detect and compare different H2A.X deposition patterns in ES cells [GSE42306] and TS cells, with Illumina HiSeq 2000
Project description:Induced pluripotent stem cells (iPSCs) are commonly generated by transduction of Oct4, Sox2, Klf4 and Myc (OSKM) into somatic cells. Though iPSCs are pluripotent, they frequently exhibit high variation in their quality as measured by chimera contribution and tetraploid (4n) complementation. Thus, improving the quality of iPSCs is an indispensable prerequisite for future iPSC-based therapy. Here we show that one major determinant for iPSCs quality is the selection of the reprogramming factors combination. Ectopic expression of Sall4, Nanog, Esrrb and Lin28 (SNEL) in MEFs efficiently generated high quality iPSCs as compared to other combinations of factors. SNEL-iPSCs produced approximately 5 times more efficiently “all-iPSC” mice compared to OSKM-iPSCs. While differentially methylated regions, transcript number of master regulators, establishment of ESC-specific super enhancers, and global aneuploidy were comparable between the lines, aberrant expression of 1,765 genes, trisomy of chromosome 8 and abnormal H2A.X deposition were frequently observed in poor quality OSKM-iPSCs. For high-quality iPSCs, H2A.X pattern of SNEL is most similar to that of ESC, OSK and OSKM have more devoid regions than SNEL iPSCs. Compare H2A.X deposition pattern of the OSKM 4-factor iPS cell lines (4N-), SNEL 4-factor iPS cell lines (4N+) with ChIP-Seq. The same background ES cell line as the control line.
Project description:Nucleosomes are the principal packaging units of chromatin and critical for gene regulation and genome stability. In mammals, a subset of nucleosomes fail to be replaced by protamines during spermatogenesis and are retained in mature spermatozoa providing opportunities for paternal epigenetic transmission. In humans, the remaining 10% localize at regulatory elements of genes. To assess evolutionary conservation and to dissect the molecular logic underlying nucleosome retention, we determined the genome wide nucleosome occupancy in mouse spermatozoa that only contain 1% residual histones. In striking contrast to mammalian somatic cells and haploid round spermatids, we observe high enrichment of nucleosomes at CpG-rich sequences throughout the genome, at conserved regulatory sequences as well as at intra- and intergenic regions and repetitive DNA. This preferred occupancy occurs mutually exclusive with DNA methylation both in mouse and human sperm. At unmethylated CpG-rich sequences, residing nucleosomes are largely composed of the H3.3 histone variant, and trimethylated at lysine 4 (H3K4me3). Both canonical H3.1/H3.2 and H3.3 variant histones are present at promoters marked by Polycomb-mediated H3K27me3, which is strongly predictive for gene repression in pre-implantation embryos. Our data indicate important roles of DNA sequence composition, DNA methylation, variant H3.3 and canonical H3.1/H3.2 histones and associated modifications in nucleosome retention versus eviction during the histone-to-protamine remodeling process in elongating spermatids and potentially in epigenetic inheritance by nucleosomes between generations. Identification of histone, histone variant and histone modification states in round spermatids and sperm