Alternative cleavage and polyadenylation in spermatogenesis coordinates chromatin regulation and post-transcriptional control
Ontology highlight
ABSTRACT: Most mammalian genes display alternative cleavage and polyadenylation (APA). Previous studies have indicated preferential expression of APA isoforms with short 3âUTRs in testes. Here we show widespread shortening of 3âUTR by APA during the first wave of spermatogenesis in mouse, with 3âUTRs being the shortest in spermatids. Shortening of 3âUTR eliminates destabilizing elements, such as U-rich elements and transposable elements, which appear to be highly potent for transcript elimination during spermatogenesis. We additionally found widespread regulation of APA in introns and global activation of upstream antisense transcripts during spermatogenesis. Interestingly, genes that display 3âUTR shortening tend to have higher levels of H3K4me3, consistent with the open chromatin feature previously observed in spermatids. Since genes with 3âUTR shortening tend to have functions important for further sperm development after spermatids, when transcription is halted, this result indicates that expression of short, stable mRNAs may serve the purpose of mRNA storage for later translation. Thus, APA in spermatogenesis connects regulation of chromatin status with post-transcriptional control, and impacts sperm maturation. 3'READS of 1 week to 6 week of testis development
ORGANISM(S): Mus musculus
SUBMITTER: Wencheng Li
PROVIDER: E-GEOD-73973 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA