Project description:Histone H3 lysine 4 trimethylation (H3K4me3) is known to correlate with both active and poised genomic loci, yet many questions remain regarding its functional roles in vivo. We identify functional genomic targets of two H3K4 methyltransferases, Set1 and MLL1/2, in both the stem cells (X1) and differentiated tissue (Xins) of the planarian flatworm Schmidtea mediterranea. We show that, despite their common substrate, these enzymes target distinct genomic loci in vivo, which are distinguishable by the footprint each enzyme leaves on the chromatin template, i.e., the breadth of the H3K4me3 peak. Whereas Set1 targets are broadly associated with the maintenance of the stem cell population, MLL1/2 targets are specifically enriched for genes involved in ciliogenesis. These data not only confirm that chromatin regulation is fundamental to planarian stem cell function, but also provide evidence for post-embryonic functional specificity of H3K4me3 methyltransferases in vivo. To test this, we looked at the H3K4me3 chromatin profile in WW, X1 and Xins cell types upon knockdown of set1, mll1/2, as well as WT. Examine differential binding of H3K4me3 in different experimental conditions. The experiment performed yielded a total of 58 samples.
Project description:Histone H3 lysine 4 trimethylation (H3K4me3) is known to correlate with both active and poised genomic loci, yet many questions remain regarding its functional roles in vivo. We identify functional genomic targets of two H3K4 methyltransferases, Set1 and MLL1/2, in both the stem cells (X1) and differentiated tissue (Xins) of the planarian flatworm Schmidtea mediterranea. We show that, despite their common substrate, these enzymes target distinct genomic loci in vivo, which are distinguishable by the footprint each enzyme leaves on the chromatin template, i.e., the breadth of the H3K4me3 peak. Whereas Set1 targets are broadly associated with the maintenance of the stem cell population, MLL1/2 targets are specifically enriched for genes involved in ciliogenesis. These data not only confirm that chromatin regulation is fundamental to planarian stem cell function, but also provide evidence for post-embryonic functional specificity of H3K4me3 methyltransferases in vivo. To test this, we looked at the H3K4me3 chromatin profile in WW, X1 and Xins cell types upon knockdown of set1, mll1/2, as well as WT. Examine binding of H3K36me3 in WT in Planarian. The experiment performed yielded a total of 2 samples. These samples validate the main ChIP samples.
Project description:Expression data from Caenorhabditis elegans let-418(RNAi), mep-1(RNAi) and gfp(RNAi) L1 larvae. The C. elegans genome encodes two homologs of the human protein Mi-2, namely LET-418 and CHD-3. LET-418 plays an essential role during development; its depletion leads to a pleiotropic and lethal phenotype that includes larval arrest, an everted vulva and sterility. Without maternal contribution, let-418 mutants stop their development at the L1 larval stage (von Zelewsky et al., 2000). We further characterized this arrest and showed that it is very similar to the L1 diapause induced by starvation; both germline and somatic cells remain in a quiescent state in let-418 L1 arrested larvae, indicating that LET-418 activity is required to bypass the L1 arrest in presence of food. The let-418 L1 larvae express ectopically the P granule component PGL-1 in somatic cells (Unhavaithaya et al., 2002). Interestingly, the phenotype of mep-1 mutants is remarkably similar to that of let-418: RNAi targeting mep-1 also induced an L1 arrest phenotype; furthermore, MEP-1 and LET-418 have been shown to physically interact (Unhavaithaya et al., 2002 and M. Passannante). The null allele mep-1(q660) is temperature sensitive and shows a more severe phenotype at higher temperatures. At 20°C, about 10% of mep-1 homozygotes derived from heterozygous mothers arrest as young larvae, whereas the remaining 90% develop into sterile adults (Belfiore et al., 2002). Later in development, the somatic gonad is affected in mep-1(q660) mutants. This results in an abnormal and disorganized gonad, a phenotype also observed in let-418(s1617) mutants. Both let-418 and mep-1 mutants produce a very limited number of oocytes and have pseudovulvae derived from P8.p (Belfiore et al., 2002; von Zelewsky et al., 2000 and C. Wicky, personal communication). Preliminary quantitative real-time PCR revealed that the expression of genes coding for P granule components was deregulated in both mep-1(RNAi) and let-418(RNAi) L1 larvae (data not shown). To further investigate this issue, we performed a complete gene expression analysis. Given the fact that mep-1(q660) mutants are sterile, we used RNA interference to generate mep-1 depleted worms. Bacteria expressing gfp dsRNA (pPE128.110 in HT115) were used as reference, since RNA interference may induce gene expression changes by itself. C. elegans L1 larvae treated with RNA interference were selected for RNA extraction and hybridization on Affymetrix microarrays. Synchronized wild type L4 animals were grown at 25° on bacteria expressing either gfp, let-418 or mep-1 dsRNA. Eggs were collected by bleaching gravid adults and allowed to hatch in the absence of food at 25°C. Newly hatched L1 larvae were fed on bacteria expressing the different dsRNA for three hours to recover from starvation. Three replicates per RNAi.
Project description:Epigenetic modifications are thought to be important for gene expression changes during development and aging. However, besides the Sir2 histone deacetylase in somatic tissues and H3K4 trimethylation in germlines, there is scant evidence implicating epigenetic regulations in aging. The insulin/IGF-1 signaling (IIS) pathway is a major lifespan regulatory pathway. Here we show that progressive increases in gene expression and loss of H3K27me3 on IIS components are due, at least in part, to increased activity of the H3K27 demethylase UTX-1 during aging. RNAi of the utx-1 gene extended the mean lifespan of C. elegans by ~30%, dependent on DAF-16 activity and not additive in daf-2 mutants. The loss of utx-1 increased H3K27me3 on the Igf1r/daf-2 gene and decreased IIS activity leading to a more "naive" epigenetic state. Like stem cell reprogramming, our results suggest that reestablishing epigenetic marks lost during aging might help "reset" the developmental age of animal cells. Examination of H3K27me3 in young and old worms without or with Utx-1 RNAi.
Project description:From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10 and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, as well as other candidate RNAi factors. The newly identified RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage, but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and the dosage-sensitive RNAi defective genes rsd-2, rsd-6 and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. Small RNA analysis by deep sequencing in various wild type and mutant C. elegans strains.
Project description:C. elegans nuclear pore protein NPP-13 associates with small RNA genes transcribed by RNA Polymerase III. To test if the nuclear pore-chromatin interactions play a role in large-scale chromatin organization, we determined nuclear membrane-genome interactions and RNA Polymerase II localization in C. elegans embryos depleted for NPP-13. Genome-wide ChIP-seq and ChIP-chip for nuclear membrane protein LEM-2, RNA Polymerase II (AMA-1) and H3K4me3 were performed in mixed-stage C. elegans embryos depleted for NPP-13. As a control, ChIP was also performed in wild-type embryos treated with empty vector.
Project description:RNA-seq of C.elegans strain N2 (wt) with and without sfa-1 RNAi at adult day 3 and day 15, C. elegans strain DA1116 (eat-2(ad1116)) with and without sfa-1 RNAi at adult day 3, day 15, and day 27, C. elegans strain SS104 (glp-4(bn2)) with and without hrp-2 RNAi at adult day 1, and HeLa cells with and without SF1 siRNA.
Project description:Defects in mitochondrial metabolism have been increasingly linked with age-onset protein misfolding diseases such as Alzheimerâs, Parkinsonâs, and Huntingtonâs. In response to protein folding stress, compartment-specific unfolded protein responses (UPRs) within the endoplasmic reticulum, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood. We have uncovered a conserved, robust mechanism linking mitochondrial protein homeostasis and the cytosolic folding environment through changes in lipid homeostasis. Metabolic restructuring caused by mitochondrial stress or small molecule activators trigger changes in gene expression coordinated uniquely by both the mitochondrial and cytosolic UPRs, protecting the cell from disease-associated proteins. Our data suggest an intricate and unique system of communication between UPRs in response to metabolic changes that could unveil new targets for diseases of protein misfolding. Because the induction of the MCSR due to hsp-6 RNAi required both hsf-1 and dve-1, key transcription factors required for the HSR and UPRmt, respectively, we asked which gene sets are coordinately regulated by both factors. We performed microarray analyses to determine which genes have their expression altered by hsp-6 RNAi and whether these genes are regulated either by hsf-1, dve-1 or both
Project description:RNA interference (RNAi) is a potent mechanism for down-regulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi and other eukaryotes. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary siRNAs. Exogenous double stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear if the sub-cellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively. We report that RDE-12, a conserved FG domain containing DEAD-box helicase, localizes in P-granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA targeted mRNA in distinct cytoplasmic compartments. Examination of exogenous dsRNA trigger derived siRNA in wildtype and rde-12 mutant animals