Project description:miRNAs expression of tumor sample of mexican patients with breast cancer. Samples obtained from the Hospital San Jose Tec de Monterrey. The experiments were with one color per patient, miRNAs expression profile is from a tumor sample of mexican patients with breast cancer.
Project description:Approximately two decades ago, Vogelstein and Fearon proposed the adenoma-carcinoma sequence of sporadic CRC development and illustrated the accumulation of genetic alterations during the stepwise progression, thereby providing a guideline for clinical practice. Although the detection and excision of precancerous lesions could prevent colorectal cancer and reduce mortality, 6% of adenomas will ultimately develop into colorectal cancer. Thus, this genetic model for colorectal tumorigenesis may not completely reflect the complex essence of the disease and whether the mode of initiation of the events in the multistep progression affects the outcome of CRC is still unknown. In this study, mRNA and miRNA expression profiling was performed with human colorectal tissues, including normal mucosa, adenoma and adenocarcinoma. Then, an integrated approach was adopted to establish the regulatory interaction networks that were correlated with colorectal carcinogenesis. Finally, a 55-gene signature whose expression was down-regulated in precancerous lesions compared to normal tissue was identified as a potential early indicator of CRC survival. The results suggested that genes related to immunity and homeostasis played a critical role in protection against adenoma initiation and that the altered molecular events that influence colorectal cancer prognosis may be set in an early, precancerous stage. Four types of human colorectal tissues were selected by colonoscopic resection or colorectal surgery, including 15 normal mucosae, 39 low-grade adenomas (mild or moderate atypical hyperplasia), 20 high-grade adenomas (severe atypical hyperplasia or carcinoma in situ) and 33 adenocarcinomas. MicroRNA expression profiling analysis of these samples was performed on Agilent 8Ã16K Human miRNA Microarray V3 (G4470C).
Project description:Medulloblastoma (MB) is the most common pediatric brain tumor and is an aggressive neoplasia arising in the cerebellum. MB includes four major histological subsets commonly subdivided in: classic, desmoplastic, anaplastic or large-cell, and nodular. The current patients risk stratification is based on the age at diagnosis (> or < 3 years at diagnosis), the extent of residual tumor mass post-operative, and disease dissemination. An average risk is assigned to patients older than 3 years of age with minimal or no tumor residual. These patients are more than 60% of overall MBs and have an overall survival between 50-70% at 5 years. It is widely accepted that tumor aggressiveness and progression depend on genetic abnormalities. We performed the genome-wide study, focused on classic MB belonging to pediatric patients at standard risk. We analyzed 31 MB samples using high resolution oligonucleotide Human Genome CGH 244K (Agilent Technologies). The present study may help to identify novel molecular prognostic markers useful to refining current criteria of patientsM-BM-4 relapse risk estimation in this subgroup of patients. We analyzed 31 samples of classic medulloblastoma from patients older than 3 years of age at diagnosis
Project description:Gene expression of tumor sample of mexican patients with breast cancer. Samples obtained from the Hospital San Jose Tec de Monterrey. The experiments were with one color per patient, gene expression profile is from a tumor sample of mexican patients with breast cancer.
Project description:Environmental risk assessment relies heavily on the use of bioassays to assess the environmental impact of chemicals. Gene expression is gaining acceptance as a valuable mechanistic endpoint in bioassays and effect-based screening. Data analysis and its results however, are often complex and not directly applicable in risk assessment. Classifier analysis is a promising method to turn complex gene expression analysis results into answers suitable for risk assessment. We have assembled a large gene expression dataset assembled from multiple studies and experiments in the springtail Folsomia candida, with the aim of selecting a set of genes that can be trained to classify general toxic stress. By performing differential expression analysis prior to classification we were able to select a set of 135 genes which was enriched in stress related processes. This set was then used to classify two test sets comprised of chemical spiked soils, polluted soils and clean soils and compared to another, more traditional feature selection for classification. The gene set presented here outperformed the more traditionally selected gene set. This gene set has the potential to be used as a biomarker to test for adverse effects caused by chemicals in springtails to provide endpoints in environmental risk assessment. The data presented in our manuscript is part of a larger experiment which was performed in single, large loop design. Only the samples used in the study presented here are named while the other samples will remain unnamed. All the data can still be used for normalization after which the analysis presented in the manuscript can be replicated. A single channel, interwoven loop design was used to test animals exposed to a control and to 5 concentrations of cadmium and phenanthrene (cadmium concentrations are: cad_1 till cad_5: 5.8, 14.5, 28.9, 57.9 and 115.8 mg/Kg respectively and phenanthrene concentrations are: phe_1 till Phe_5: 0, 4.6, 11.4, 22.9, 45.8 and 91.6 mg/Kg soil respectively). Exposures lasted for 2 days and used 4 biological replicates per condition each containing 30 grams soil and 30 individuals.
Project description:Background: Long non-coding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. They are aberrantly expressed in many types of diseases. We want to study the lncRNAs profiles in preeclampsia. Preeclampsia has been observed in patients with molar pregnancy where a fetus is absent demonstrating that the placenta is sufficient to cause the condition. So we analyze the lncRNAs profiles in preeclampsia placentas. In this study, we described the lncRNAs profiles in 6 preeclampsia placentas (T) and 5 matched normal pregnancy placentas (N) tissues by microarray. Methodology/Principal Findings: With abundant and varied probes accounting 33,045 LncRNAs in our microarray, the number of lncRNAs that expressed at a certain level could be detected is 28,443. From the data we found there were 738 lncRNAs that differentially expressed (M-bM-^IM-%1.5 fold-change) among preeclampsia placentas compared with matched controls. Up to 18,063 coding transcripts could be detected in placenta samples through 30,215 coding transcripts probes. Coding-non-coding gene co-expression networks (CNC network) were constructed based on the correlation analysis between the differential expressed lncRNAs and mRNAs. According to the GO-Pathway analysis of differential expressed lncRNAs/mRNAs, we choose three lncRNAs to analyze the relationship between lncRNAs and preeclampsia. LOC391533, LOC284100, CEACAMP8 were evaluated by qPCR in 40 of preeclampsia placentas and 40 of controls. The results showed three lncRNAs were aberrantly expressed in preeclampsia placentas compared with controls. Conclusions/Significance: Our study is the first one to determine genome-wide lncRNAs expression patterns in preeclampsia placenta by microarray. The results displayed that clusters of lncRNAs were aberrantly expressed in preeclampsia placenta compared with controls, which revealed that lncRNAs differentially expressed in preeclampsia placenta may exert a partial or key role in preeclampsia development. Misregulation of LOC391533, LOC284100, CEACAMP8 might be associated with preeclampsia. Taken together, this study may provide potential targets for future treatment of preeclampsia and novel insights into preeclampsia biology. LncRNAs/mRNAs profiles in 6 preeclampsia placentas and 5 matched normal pregnancy placentas tissues by microarray using Arraystar v2.0.
Project description:The lncRNA expression profiles in three pairs of hTERT-positive gastric cancer tissue sand hTERT-negative para-cancerous tissues. The para-cancerous tissue is at least 5cm away from the cancer tissue. The expression of hTERT of identified by immunohistochemistry before RNA extraction for lncRNA assay. LncRNAs/mRNAs in 3 gastric cancer tissue and 3 paired para-cancerous tissue (Control) by microarray using Arraystar Human LncRNA Microarray v2.0
Project description:To investigate how organisms mitigate the deleterious effects of mistranslation during evolution, a mutant tRNA was expressed in S. cerevisiae. The expression of Candida Ser-tRNACAG from a low copy plasmid in S. cerevisiae promoted mistranslation events by random incorporation of both serine and leucine at CUG codons. As mistranslation causes an overload of the protein quality pathways, it disrupts cellular protein homeostasis leading to a major fall in fitness. Laboratory evolutionary experiments were performed to study whether the fitness cost of mistranslation can be lowered. We also wanted to identify the cost-reduction strategy: reducing the frequencies of errors (mitigation), or increasing tolerance to errors (robustness), either by global or local activities. Gene expression was measured in the ancestor (non-evolved) lineage in two different situations: 1) carrying an empty vector and 2) expressing the mutant Ser-tRNACAG. Gene expression was also measured in three ambiguously evolved lineages (B3, D11, H9) in both situations (carrying an empty vector and expressing the mutant tRNA). Three independent experiments were performed for each lineage. Non-evolved strain with empty vector was used as control sample.
Project description:Stomata open in response to light and close following exposure to abscisic acid (ABA). They regulate gas exchange between plants and atmosphere, allowing plants to adapt to changing environmental conditions. ABA binding to receptors initiates a signaling cascade that involves protein phosphorylation. Here we show that ABA induced phosphorylation of three basic helix-loop-helix (bHLH) transcription factors, called AKSs (ABA-RESPONSIVE KINASE SUBSTRATES; AKS1, AKS2, AKS3), in Arabidopsis guard cells, and that they facilitated stomatal opening through the transcription of genes encoding inwardly-rectifying K+ channels. aks1aks2-1 double mutant plants showed decreases in light-induced stomatal opening, K+ accumulation in response to light, activity of inwardly-rectifying K+ channels, and transcription of genes encoding major inwardly-rectifying K+ channels. Overexpression of POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1 (KAT1), which encodes a major inwardly-rectifying K+ channel in guard cells, rescued the phenotype of aks1aks2-1 plants. AKS1 bound directly to the promoter of KAT1, an interaction that was attenuated after ABA-induced phosphorylation. The ABA agonist pyrabactin induced phosphorylation of AKSs. Our results demonstrate that the AKS family of bHLH transcription factors facilitates stomatal opening through transcription of genes encoding inwardly-rectifying K+ channels, and that ABA suppresses the activity of inwardly-rectifying K+ channel activity by triggering the phosphorylation of these transcription factors. To find the affect of AKS1 and AKS2 transcription factors on gene expression, Arabidopsis guard cell protoplasts from wild type and aks1aks2-1 mutant were compared. Three independent experiments were performed.
Project description:To analysis TCR induced Med23-dependent gene expression programs in T cells, we have employed microarray expression profiling as a discovery platform to identify genes with the potential to be regulated by Med23 in unstimulated or stimulated T cells. Mice CD4 T cells from wildtype and Med23 knockout mice were left unstimulated or stimulated for 6 hr, and gene expression difference was identified among four samples. Expression of seven genes (Med23, IFNg, IL2, Egr2, c-Fos, c-Jun and Foxp1) was validated in the same RNA samples by real-time PCR. TCR induced Med23-dependent gene expression was measured after unstimulation or stimulation for 6 hr in wildtype and Med23 knockout CD4 T cells.