Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells
Ontology highlight
ABSTRACT: Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial (EC) and vascular smooth muscle cells (SM). At present, it is unclear whether the cell fate program of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field (SHF) cardiovascular progenitors (CVPs) using WNT3A and Endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1+ vascular intermediates, and demonstrates for the first time, the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. The HumanHT-12 v4 BeadChip (Illumina) was used to analyse paracrine factors produced by sub-regions of the fetal heart, followed by pairing the paracrine factors present in these specific regions with corresponding receptors that are highly expressed in uncommitted cardiovascular progenitor cells.
ORGANISM(S): Homo sapiens
SUBMITTER: Henry Yang
PROVIDER: E-GEOD-75985 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA