Methylation-silenced genes in colorectal cancer cell lines
Ontology highlight
ABSTRACT: Using an oligonucleotide array, we undertook a genome-wide search for genes upregulated following treatment with a demethylating agent in two CRC cell lines. Promoter methylation status was determined in 12 CRC cell lines and 11 CRC tissues. After the treatment, 350 genes were upregulated 1.5 fold or more. Six genes (PAGE-5, VCX, MAEL, GAGED2, UCHL1, and GAGE7), which contained putative 5'CpG islands in their promoter regions, were confirmed to be silenced in CRC cell lines. The median level of UCHL1 gene expression in cell lines with methylation was significantly lower than that in cell lines without methylation (P = 0.032). The level of methylation of UCHL1 was significantly higher in tumors than in corresponding normal mucosae (P = 0.005). Chemical genomic screening led to the identification of a specific promoter subject to hypermethylation in CRC. These results suggest that aberrant promoter methylation is the primary mechanism of transcriptional silencing of the UCHL1 gene and that methylation of the UCHL1 gene promoter increases during the development and progression of CRC Keywords: Methylation Analysis This study explored methylation-silenced genes in colorectal cancer (CRC) cell lines. Using an oligonucleotide array, a genome-wide search for genes upregulated following treatment with a demethylating agent, 5-aza-2â??-deoxycitidine, in two CRC cell lines, DLD-1 and HT-29, was performed. Promoter methylation status of candidate genes silenced and upregulated following the treatment was determined in 12 CRC cell linesby methylation-specific PCR.
ORGANISM(S): Homo sapiens
SUBMITTER: Satoshi Fukutomi
PROVIDER: E-GEOD-7687 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA