Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 M1-skeletal muscle (red, slow) tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 M2-skeletal muscle (white, fast) tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 heart tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 liver tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 brain tissue samples: 4 biological replicates each.
Project description:In an effort to produce a mouse model of Mitochondrial Myopathy with Lactic acidosis and Sideroblastic Anemia (MLASA), we knocked out the gene for Pseudouridine synthase 1 (PUS1), an enzyme that modifies uridine to pseudouridine in many cytoplasmic and mitochondrial tRNAs, as well as other cellular RNAs. The Pus1-/- mice are viable, are born at the expected Mendelian frequency, and are non-dysmorphic. The PUS1 mRNA and certain pseudouridine modifications are absent in cytoplasmic and mitochondrial tRNAs in the Pus1-/- mice. The Pus1-/- mice display reduce exercise capacity at 14 weeks, with alterations in muscle morphology, histology, and physiology. Red gastrocnemius muscle from Pus1-/- mice shows reduced number and size of mitochondria and reduced Cytochrome C oxidase activity. Two-condition, two-color experiment: Mouse wild type PUS1 and homozygous mutant PUS1 kidney tissue samples: 4 biological replicates each.
Project description:Mid-stream urine was collected from bladder cancer patients prior to surgery. Both tumor tissue and normal bladder mucosa that are located at >3cm away from the tumor edge were obtained by cystoscopy. For the normal controls with haematuria, urine samples were collected from patients who had normal cystoscopic finding and absence of malignancy with >6 months follow-up. All urine samples were centrifuged at 2500 r.c.f. for 20 minutes and the urine supernatant was collected. Total RNA of urine supernatant and frozen tissue was extracted using MirVanaTM PARISTM Kit (Ambion) in accordance with the manufacturerâs recommended protocols. AgilentTM Human miRNA Microarray Chip (Release 13.0, Agilent Technologies, Santa Clara, CA, USA) was used to determine the microRNA expression profiles of the samples.
Project description:Identifying the exact molecules associated with CRC metastasis may be crucial to understand the process, which might also be translated to the diagnosis and treatment of CRC. In this study, we investigate the association of microRNA expression patterns with the lymph node metastasis of colorectal cancer. To investigate the association of microRNA expression patterns with the lymph node metastasis of colorectal cancer, eight primary colorectal cancer tissues derived from stage II–III colorectal cancer patients with (n = 4) or without (n = 4) lymph node metastasis were collected and the miRNA expression profiles of them were determined using Agilent miRNA microarray. Different miRNA expression profiles were identified in CRC tissues between lymph node metastasis positive and negative group.
Project description:We provide an original multi-stage approach identifying a gene signature to assess the fibroblast polarization. Prototypic polarizations (inflammatory/fibrotic) were induced by seeded mouse embryonic fibroblasts (MEFs) with TNFα or TGFß1, respectively. The transcriptomic and proteomic profiles were obtained by RNA microarray and LC/MS-MS. Gene Ontology and pathways analysis were performed among the differentially expressed genes (DEGs) and proteins (DEPs). Balb/c mice underwent daily intradermal injections of HOCl (or PBS) as an experimental murine model of inflammation-mediated fibrosis in a time-dependent manner. As results, 1,456 and 2,215 DEGs, and 289 and 233 DEPs were respectively found in MEFs in response to TNFα or TGFß1, respectively. Among the most significant pathways, we combined 26 representative genes to encompass the proinflammatory and profibrotic polarizations of fibroblasts. Based on principal component analysis, this signature deciphered baseline state, proinflammatory polarization, and profibrotic polarization as accurately as did RNA microarray and LC/MS-MS. Then, we assessed the gene signature on dermal fibroblasts isolated from the experimental murine model. We observed a proinflammatory polarization at day 7, and a mixture of a proinflammatory and profibrotic polarizations at day 42 in line with histological findings. Our approach provides a small-size and convenient gene signature to assess murine fibroblast polarization.
Project description:To investigate the gene expression profile of genamycin induced nephrotoxicity in a time-series aspect, SD rats were administrated once daily with saline, genamycin 80 mgkg for 28 consecutive days by intramuscular injection folled by 28 days recovery. Kidney samples were collected for microarray analysis and histological examination. There were 4360 and 4323 regulated genes for females and males, respectively, however, the overlapping expression genes coregluated at each time point were few, with 2 for females and 12 for males. By Principle Component Analysis and Hierarchical Cluster, the gene expression patterns were apparently associated with the disease stage of the nephrotoxicity,while GO Annotation showed the biological processes were specific to each course of this nephrotoxicity.Our studymapped the different gene expression patterns at the initiation, development and recovery stage of gentamycin-induced nephrotoxicity Gene expression in kidney from SD rats administrated once daily with saline or 80 mg/kg genamycin by intramuscular injection for 28 consecutive days follwed by 28 days recovery were measured using Aglient Rat Whole Genome 4*44 k array