Digital expression profiling highlights a distinct live RNA signature in high-risk Primary Biliary Cholangitis (PBC)
Ontology highlight
ABSTRACT: Using outcome after long term follow-up to define risk at disease presentation high risk (n=9 who went on to require liver transplantation) and low risk (n=7 who responded fully to UDCA) patients were identified and their first liver biopsies retrieved. RNA was successfully extracted and analysed using nanostring® transcriptomics. Patients with progressive disease appear to have a distinct molecular signature. high risk (n=9 who went on to require liver transplantation) and low risk (n=7 who responded fully to UDCA) patient material was processed along with non-diseased control liver (n=8)
Project description:Using outcome after long term follow-up to define risk at disease presentation high risk (n=9 who went on to require liver transplantation) and low risk (n=7 who responded fully to UDCA) patients were identified and their first liver biopsies retrieved. RNA was successfully extracted and analysed using nanostring® transcriptomics. Patients with progressive disease appear to have a distinct molecular signature.
Project description:OBJECTIVE: The number of patients with HCV-related cirrhosis is increasing, leading to a rising risk of complications and death. Prognostic stratification in patients with early-stage cirrhosis is still challenging. We aimed to develop and validate a clinically useful prognostic index based on genomic and clinical variables to identify patients at high risk of disease progression. DESIGN: We developed a prognostic index, comprised of a 186-gene signature validated in our previous genome-wide profiling study, bilirubin (>1 mg/dL) and platelet count (<100 000/mm3), in an Italian HCV cirrhosis cohort (training cohort, n=216, median follow-up 10 years). The gene signature test was implemented using a digital transcript counting (nCounter) assay specifically developed for clinical use and the prognostic index was evaluated using archived specimens from an independent cohort of HCV-related cirrhosis in the USA (validation cohort, n=145, median follow-up 8 years). RESULTS: In the training cohort, the prognostic index was associated with hepatic decompensation (HR=2.71, p=0.003), overall death (HR=6.00, p<0.001), hepatocellular carcinoma (HR=3.31, p=0.001) and progression of Child-Turcotte-Pugh class (HR=6.70, p<0.001). The patients in the validation cohort were stratified into high-risk (16%), intermediate-risk (42%) or low-risk (42%) groups by the prognostic index. The high-risk group had a significantly increased risk of hepatic decompensation (HR=7.36, p<0.001), overall death (HR=3.57, p=0.002), liver-related death (HR=6.49, p<0.001) and all liver-related adverse events (HR=4.98, p<0.001). CONCLUSIONS: A genomic and clinical prognostic index readily available for clinical use was successfully validated, warranting further clinical evaluation for prognostic prediction and clinical trial stratification and enrichment for preventive interventions. 90 liver tissue needle biopsy specimens from patients with histologically proven cirrhosis lacking evidence and a history of hepatic decompensation or HCC.
Project description:OBJECTIVE: The number of patients with HCV-related cirrhosis is increasing, leading to a rising risk of complications and death. Prognostic stratification in patients with early-stage cirrhosis is still challenging. We aimed to develop and validate a clinically useful prognostic index based on genomic and clinical variables to identify patients at high risk of disease progression. DESIGN: We developed a prognostic index, comprised of a 186-gene signature validated in our previous genome-wide profiling study, bilirubin (>1?mg/dL) and platelet count (<100?000/mm3), in an Italian HCV cirrhosis cohort (training cohort, n=216, median follow-up 10?years). The gene signature test was implemented using a digital transcript counting (nCounter) assay specifically developed for clinical use and the prognostic index was evaluated using archived specimens from an independent cohort of HCV-related cirrhosis in the USA (validation cohort, n=145, median follow-up 8?years). RESULTS: In the training cohort, the prognostic index was associated with hepatic decompensation (HR=2.71, p=0.003), overall death (HR=6.00, p<0.001), hepatocellular carcinoma (HR=3.31, p=0.001) and progression of Child-Turcotte-Pugh class (HR=6.70, p<0.001). The patients in the validation cohort were stratified into high-risk (16%), intermediate-risk (42%) or low-risk (42%) groups by the prognostic index. The high-risk group had a significantly increased risk of hepatic decompensation (HR=7.36, p<0.001), overall death (HR=3.57, p=0.002), liver-related death (HR=6.49, p<0.001) and all liver-related adverse events (HR=4.98, p<0.001). CONCLUSIONS: A genomic and clinical prognostic index readily available for clinical use was successfully validated, warranting further clinical evaluation for prognostic prediction and clinical trial stratification and enrichment for preventive interventions. 145 liver tissue needle biopsy specimens from U.S. HCV cirrhosis cohort patients with histologically proven cirrhosis lacking evidence and a history of hepatic decompensation or HCC.
Project description:Kidney transplant recipients with biopsy-proven microvascular injury (MVI) have increased risk for allograft failure. MVI is often caused by antibody-mediated injury that is resistant to available treatments. Current diagnostic methods are also inadequate, with interobserver variability in traditional pathology reads, variable assessment of circulating donor-specific antibody between HLA laboratories, and peritubular capillary C4d staining. Molecular assessments of kidney biopsies can provide improved sensitivity for diagnosing MVI and other allograft pathology, while improving reproducibility and objectivity. Most molecular classifiers have been based on whole genome sequencing to develop diagnostic tests, but have provided limited therapeutic targets. In this study, we pursued a candidate gene approach to measure WNT pathway genes in residual clinical FFPE biopsies with and without MVI. We focused on the WNT pathway because of previous translational studies that implicated this pathway in chronic renal allograft injury as well as vascular injury in native chronic kidney disease. Case-control study of 95 residual FFPE biopsies with MVI (g+ptc score >= 2, n=50) or Stable (g+ptc score < 2 and no other major abnormalities, n=45). Biopsies were retrieved from a biorepository of over 500 kidney transplant biopsies. We compared expression of 180 WNT pathway genes and 30 custom skipe-in targets (derived from previous studies of endothelial injury in transplantation) between MVI and Stable groups, with correction for multiple comparisons using FDR < 5%. This dataset is part of the TransQST collection.
Project description:To date, there are no known prognostic markers identified in patients with fusion gene-negative rhabdomyosarcoma. This study validates the 5-gene (MG5) signature as a prognostic marker in patients with fusion negative intermediate-risk rhabdomyosarcoma clearly stratifying this otherwise clinically homogenous population of patients into two risk groups based on outcome. In addition, this analysis was performed using nCounter assay on paraffin embedded tissues and the results were concordant to previously published results using frozen tissues in a different patient cohort. Therefore, this work holds tremendous translational relevance as the MG5 signature can be reliably assessed in readily available paraffin embedded tissues of fusion gene-negative rhabdomyosarcoma patients in prospective clinical trials to stratify them into prognostic risk groups as well as to potentially tailor future therapy based on these risk groups.
Project description:miRNA profiling study revealing novel miRNAs deregulated in SBNET compared to normal small bowel and identifying miRNA that are differentially regulated with disease progression. These have the potential to be used in the future for patient stratification and treatment response monitoring. Dataset 1 Matched samples from 15 SBNET patients (47 samples) were used to determine a miRNA profile for SBNET and identify potential markers of disease progression. Patient numbers: 1-15. Dataset 2 A second dataset of miRNA expression data (43 samples) containing an increased number of liver metastases, as well as SBNET and lymph node metastases. Patient numbers: B9-B140, controls: C1, C2.
Project description:Identification of genes in DNA damage response and repair pathways differentially transcribed or translated under anoxia or hypoxia in GM05757 normal human fibroblast cells and DU145 human prostate cancer cells. Comparison of mRNA abundance and translation efficiency of genes in DNA damage response and repair pathways in selected anoxia/hypoxia-treated cells with those in normoxia-treated controls.
Project description:Background and Aims Formalin-fixed, paraffin-embedded (FFPE) tissue is the most commonly available form of archived clinical specimens, which are often stored as thin sections on glass slides. RNA isolated from such archived section (AS) of FFPE tissue is more degraded compared to freshly cut (FC) FFPE section because of prolonged air exposure. In this study, we evaluated performance of transcriptome profiling-based disease classification in AS-FFPE tissue. Methods Genome-wide gene-expression profiles of 5-year-old AS-FFPE tissues of 83 hepatocellular carcinoma (HCC) and 47 liver cirrhosis samples were generated by using whole-genome DASL assay (Illumina), and compared with the profiles previously produced by using FC tissue sections from the same FFPE blocks. Previously reported 186-gene liver signature of poor prognosis was also analyzed by digital transcript counting technology (nCounter assay, NanoString). Quality of the profiles and performance of gene signature-based class prediction were systematically evaluated. Results RNA quality and assay reproducibility of AS-FFPE RNA were comparable to intermediate ~ poor quality FC-FFPE samples (R2 as high as 0.93). Gene-expression signal was detected in lower number of probes in AS FFPE samples compared to FC-FFPE samples (proportion of probes with present signal (%P-call): 10-60% and 70-90% in AS- and FC-FFPE profiles, respectively). Based on %P-call quality threshold of 20%, 64/88 (77%) HCC and 37/48 (77%) liver profiles were judged as having relatively good quality data with comparable inter-sample correlation. Inter-sample correlation coefficient, as a measure to detect outlier profiles due to poor RNA quality, was also lower in AS-FFPE (0.4-0.9) compared to FC-FFPE (0.6-1.0). In the genome-wide profiling analysis, previously identified molecular subclasses of HCC tumors were reproduced in 67/83 (81%) samples, which was improved to 43/48 (90%) samples when we focused on statistically confident predictions (p<0.05). A 186-gene prognostic signature in liver cirrhosis was reproduced in 32/47 (68%) samples, which was slightly improved to 11/16 (69%) when focused on statistically significant predictions. Switch of prediction to another subclass was observed in 6% or less of the patients. nCounter assay yielded highly confident prediction: p<0.05 in 20/24 samples (83%). Switch of the prediction was observed in 2/24 samples (8%). Conclusions We observed decay of genome-wide transcriptional profiles in AS-FFPE tissues in a quantitative manner. However, disease classification was still possible, which suggests potential of AS-FFPE material for clinical diagnosis and prognosis. Digital transcript counting is a promising option to measure gene-expression signatures in AS-FFPE tissue. FFPE tissue sections (10 micron-thick) sliced from 5~16-year-old FFPE blocks and archived for 6~7 years on glass slide
Project description:In this study, we analyzed the differential spatial transcriptome of Triple-Negative Breast Cancer (TNBC) patients who responded in an opposite manner to neoadjuvant chemotherapy (NACT): we compared responders displaying pathological complete response (pCR) with no-responders who showed disease progression during therapy. Diagnostic TruCut biopsies were analyzed using the GeoMx Cancer Transcriptome Atlas (Nanostring).
Project description:MicroRNA deregulation is frequent in human colorectal cancers (CRCs) but little is known to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b over-expression is triggered in mouse and humans by APC loss, PTEN/PI3K pathway deregulation and by SRC over-expression and promotes tumor transformation and progression. We show that miR-135b up-regulation is common to sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth controlling genes involved in proliferation, invasion and apoptosis. We identify miR-135b as a key down-steam effector of oncogenic pathways and a potential novel target for CRC patient’s treatment. RNA was extracted from fresh frozen tissues from tumours from APC;CpC and AOM/DSS mice and normal matched tissues