Distinct gene expression profile of Xanthomonas retroflexus engaged in synergistic multispecies biofilm formation
Ontology highlight
ABSTRACT: It is well known that bacteria often exist in naturally formed multispecies biofilms. Within these biofilms, interspecies interactions seem to play an important role in ecological processes. Little is known about the effects of interspecies interactions on gene expression in these multispecies biofilms. This study presents a comparative gene expression analysis of the Xanthomonas retroflexus transcriptome when grown in a single-species biofilm and in dual- and four-species consortia with Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus. The results revealed complex interdependent interaction patterns in the multispecies biofilms. Many of the regulated functions are related to interactions with the external environment and suggest a high phenotypic plasticity in response to coexistence with other species. Furthermore, the changed expression of genes involved in aromatic and branched chain amino acid biosynthesis suggests nutrient cross feeding as an contribution factor for the observed synergistic biofilm production when these four species coexists in a biofilm. X. retroflexus was cultivated in three replicates of single-species biofilm and combined with S. rhizophila, M. oxydans and P. amylolyticus in dual-species biofilms with three respective replicates. At last, we combined all four species in a multispecies biofilm with five replicates and conducted a RNA seq based comparative gene expression study utilizing the Illumina sequencing technology. Please note that the 'prodigal_all_new.txt' contains gene names (which are listed in the matrix_sum.txt) and their position in the genomes, which are included in the file 'all_contigs_500.fasta'.
ORGANISM(S): Microbacterium oxydans
SUBMITTER: Lea Benedicte Hansen
PROVIDER: E-GEOD-80267 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA