Project description:Objective: MicroRNAs (miRNAs) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from SSc-ILD patients. A chronic lung fibrotic murine model was used. Methods: RNA was isolated from lung tissue of 12 SSc-ILD patients and 5 control lungs. High-resolution computed tomography (HRCT) was performed at baseline and 2-3 years after treatment. Lung fibroblasts and PBMCs were isolated from healthy controls and SSc-ILD patients. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DIANA-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin. Results: Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q<0.25). DIANA-miRPath revealed 57 KEGGs pathways related to the most dysregulated miRNAs. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts showed only mild expression of miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and showed a weaker lung induction of several genes after bleomycin exposure compared to wild-type mice. Conclusions: miRNAs are dysregulated in lungs and PBMCs of SSc-ILD patients. Based on mRNA-miRNA interaction analysis and pathway tools, miRNAs may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD. Lung biopsies taken from open lung biopsy from SSc-ILD patients (n=15 samples) and from cancer free control patients (n=5) during ressection of the lung tumor.
Project description:Objective: MicroRNAs (miRNAs) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from SSc-ILD patients. A chronic lung fibrotic murine model was used. Methods: RNA was isolated from lung tissue of 12 SSc-ILD patients and 5 control lungs. High-resolution computed tomography (HRCT) was performed at baseline and 2-3 years after treatment. Lung fibroblasts and PBMCs were isolated from healthy controls and SSc-ILD patients. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DIANA-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin. Results: Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q<0.25). DIANA-miRPath revealed 57 KEGGs pathways related to the most dysregulated miRNAs. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts showed only mild expression of miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and showed a weaker lung induction of several genes after bleomycin exposure compared to wild-type mice. Conclusions: miRNAs are dysregulated in lungs and PBMCs of SSc-ILD patients. Based on mRNA-miRNA interaction analysis and pathway tools, miRNAs may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD. Lung biopsies taken from open lung biopsy from SSc-ILD patients (n=15 samples) and from cancer free control patients (n=5) during ressection of the lung tumor.
Project description:The primary objective of this study was to determine the effectiveness of bortezomib alone or in combination with irinotecan in patients with advanced gastric and gastroesphageal cancer. A secondary objecitve was to determine whether treatment was associated with changes in gene expression in the tumor and normal adjascent tissue. Tumor biopsies and biopsies of normal adjascent tissue were obtained before therapy and 24 hours after therapy. Differences in gene expression were evaluated between tumor and normal tissue (N=8 patients), and between post-treatment and pretreatment specimens for bortezomib alone (N=2 patients) and bortezomib plus irinotecan (N=10 patients).
Project description:This SuperSeries is composed of the following subset Series: GSE30375: Gene expression data from sorted and unsorted primary human acute myeloid leukemia (AML) samples GSE30376: Gene expression data from sorted primary human cord blood samples Refer to individual Series
Project description:Experiments using xenografts show that some solid tumours and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSC). Despite promise, the relevance of the CSC model to human disease remains uncertain. Here we show that acute myeloid leukemia (AML) follows a CSC model based on sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSC) using a sensitive xenograft assay. Analysis of gene expression from all functionally validated populations yielded an LSC-specific signature. Similarly, a hematopoietic stem cell (HSC) gene signature was established. Bioinformatic analysis identified a core transcriptional program shared by LSC and HSC, revealing the molecular machinery underlying stemness properties. Both stem cell programs were highly significant independent predictors of patient survival and also found in existing prognostic signatures. Thus, determinants of stemness influence clinical outcome of AML establishing that LSC are clinically relevant and not mere artifacts of xenotransplantation. Analysis of gene expression in FACS sorted AML fractions that were functionally determined to be enriched for LSC or not (25 and 29 respectively).
Project description:HIV-1 infections of women are mainly acquired through female reproductive tract where cervical and vaginal epithelial cells are the first line of defense. Although HIV-1 does not directly infect epithelial cells, HIV-1 obligatorily interacts with and crosses over epithelial layer to infect susceptible target cells, mainly CD4+ T cells, in the lamina propria to initiate an infection. However, the mechanism and ramification of the interaction of HIV-1 and epithelial cells in vaginal transmission of HIV-1 remain to be elucidated. We hypothesized that cervical epithelial cells are not a passive barrier, but actively respond to HIV-1 to change mucosal milieu and facilitate HIV-1 transmission. We tested this hypothesis by studying the responses of cervical epithelial cells to HIV-1 through profiling genome-wide transcription. We found 1) cervical epithelial cells actively respond to HIV-1. Five hundred forty-three transcripts/genes in cervical epithelial cells were significantly altered in expression at four hours post exposure to HIV-1, of which many relate to important signaling pathways, such as innate immune responses, pattern recognition receptors, apoptosis, biosynthesis, and energy production, 2) HIV-1 increases the expression of CXC Chemokines (IL-8, CXCL1 and CXCL3) in cervical epithelial cells. IL-8 and CXCL1 are potent chemotactic for multinuclear neutrophils (MNP), monocytes and a minority of lymphocytes, and CXCL3 is predominant chemotactic for monocytes, 3) HIV-1 increases the expression of key inflammatory enzymes-COX-1 and COX-2. COX-1 is responsible for the production of prostaglandins that are important for homeostatic functions, and COX-2 is a key enzyme to convert arachidonic acid to prostaglandins, key inflammatory mediators, and 4) the increased expression of IL-8 and COX-2 revealed using microarray analysis was mapped into the endocervical epithelial cells of macaques inoculated with inactivated SIV in vivo. Our date lead to a role model of epithelial cells in HIV-1 vaginal transmission, that is the axis of HIV-1, epithelial cells, proinflammatory molecules (IL-8, CXCL1, CXCL3, COX-1 and COX-2), cell recruitment (MNP, monocytes and T cells), and inflammation. This model implies that moderating epithelial proinflammatory response to HIV-1 may be utilized in prevention of HIV vaginal transmission. Human endocervical epithelial cell line, CRL-2615, was inoculated with HIV-1 ME1 and collected 4hrs post exposure. Biologically duplicated mRNAs were prepared after exposure.
Project description:The discovery of fetal mRNA transcripts in maternal circulation holds great promise for noninvasive prenatal diagnosis. To identify potential fetal biomarkers, we studied whole blood and plasma transcripts common to term pregnant women and their newborns but reduced or absent in the postpartum mothers. In whole blood, 157 potentially-fetal transcripts were identified. RT-PCR confirmed the presence of specific transcripts, SNP analysis confirmed the presence of fetal transcripts in maternal circulation. Comparison of whole blood and plasma samples from the same women suggested that placental genes are more easily detected in plasma. We conclude that fetal and placental mRNA circulates in the blood of pregnant women. [I] We profiled whole antepartum (A), postpartum (P), and umbilical cord (U) blood samples from each of 9 mothers and their 10 newborns (1 set of twins, denoted as a and b after the sample names). [II] We also profiled plasma samples (A, P, and U) from three of those mothers to allow for a direct comparison between blood and plasma.
Project description:These paired HCC and non-tumorous liver tissues were used to determine highly differentially expressed genes in HCC and non-tumorous liver tissue. Hepatocellular carcinoma (HCC) is a malignancy with poor survival outcome. Genes showing extreme differential expression between paired human HCC and adjacent non-tumorous liver tissue were investigated. PLVAP was identified as a gene specifically expressed in vascular endothelial cells of HCC but not in non-tumorous liver tissues. This finding was confirmed by RT-PCR analysis of micro-dissected cells and immunohistochemical staining of tissue sections. A recombinant monoclonal anti-PLVAP Fab fragment co-expressing extracellular domain of human tissue factor (TF) was developed. The potential therapeutic effect and toxicity to treat HCC were studied using a Hep3B HCC xenograft model in SCID mice. Infusion of recombinant monoclonal anti-PLVAP Fab-TF into the tumor feeding artery induced tumor vascular thrombosis and extensive tumor necrosis at doses between 2.5 µg and 12 µg. Tumor growth was suppressed for 40 days after a single treatment. Systemic administration did not induce tumor necrosis. Little systemic toxicity was noted for this therapeutic agent. The results of this study suggest that anti-PLVAP Fab-TF may be used to treat HCC cases for which transcatheter arterial chemoembolization (TACE) is currently used, but without major drawbacks of TACE. Anti-PLVAP Fab-TF may improve therapeutic outcome and be a viable therapeutic agent in patients with more advanced disease and compromised liver function. Frozen hepatocellular carcinoma and adjacent non-tumorous liver tissues were used for gnee expression profiling study. Affymetrix U133A genechips were used for gene expression profiling. This dataset is part of the TransQST collection.
Project description:We purified five subsets representing the main stages of human precursor-B-cell differentiation and CD34+lin- cord blood cells. The immunoglobulin (Ig) gene rearrangement status was determined using TaqMan quantitative PCR and GeneScan analysis. To gain more insight in the networks of genes that initiate and/or regulate the different types of Ig gene rearrangements, we analyzed their gene expression profiles by correlating the initiation of Ig gene rearrangements with specific upregulation of transcription factors. In addition to previously described transcription factors, we identified 16 candidate genes involved in initiation and/or regulation of Ig gene rearrangements.
Project description:We here report transcriptome profiling of human embryos at six successive developmental stages (i.e., Carnegie Stages 9 to 14), representing the first comprehensive gene expression database of early human organogenesis. Through a series of data mining and comparisons with the transcriptome during mouse embryogenesis and the disparate genomic data in human embryonic stem cells, we revealed that development potential during early human organogenesis is orchestrated by two dominant categories of genes. Specifically, most gradually induced genes are largely differentiation related whereas those gradually repressed are involved in both stemness- and differentiation-relevant aspects of the developmental potential. Further through integrative mining we uncovered a molecular network that well characterizes stemness- and differentiation-relevant aspects of developmental potentials during early human organogenesis. Analysis of published data showed that the network could serve to evaluate various differentiation models. Our results make a significant step towards understanding of human embryogenesis at a molecular level and suggest that developmental potentials are under control of shared regulatory events. With the consent of subjects and of the Ethical Review Board of the Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine,we collected human post-implantation embryos at six successive time periods: Carnegie Stages 9 to 14 (E20 to E32), covering the first third of organogenesis. Using the Affymetrix HG-U133A Genechip microarrays, three replicates were independently profiled for each stage to minimize the influence of the embryo-to-embryo variation. Raw expression data were normalized using Robust Multi-array Averaging (RMA) with quantile normalization. The resultant expression data were imported into Extraction of Differential Gene Expression (EDGE) software for the detection of probesets exhibiting the consistent changes within the triplicates and differential expression (denoted as hORG expression matrix). The hORG expression matrix was subjected to Linear Models for Microarray Data (LIMMA) bioconductor library for identification of stage-transitive transcriptome changes, and self-organizing map combined with singular value decomposition (SOM-SVD) as well as SOM-based two-phase gene clustering for the topology-preserving extraction of temporal expression patterns. Hypergeometric distribution-based enrichment analyses were performed to explore the underlying biological relevance of gene groups of interest using diverse external annotated databases. The Cytoscape plug-in jActiveModules was modified to identify expression-active connected subnetworks in the compiled human interaction/association network.