Larval application of sodium channel homologous dsRNA restores pyrethroid insecticide susceptibility in a resistant adult mosquito population
Ontology highlight
ABSTRACT: Mosquitoes host and pass on to humans a variety of disease-causing pathogens such as infectious viruses and other parasitic microorganisms. The emergence and spread of insecticide resistance is threatening the effectiveness of current control measures for common mosquito vector borne diseases, such as malaria, dengue and Zika. Therefore, the emerging resistance to the widely used pyrethroid insecticides is an alarming problem for public health. Among the new approaches implemented for pest control, one of the most promising is RNA interference (RNAi). The aim of this study was to provide a feasible RNAi solution that can be applied on wild pyrethroid resistant mosquito populations in the near future. To achieve this, high dsRNA efficacy at economic quantities is required. It is recognized that the sodium channel transcript variability governs its functional diversity including the emergence of insecticide resistance. Therefore, to maximize the RNAi effect, we tiled a number of overlapping dsRNA constructs that together target about half of the voltage-gated sodium channel (VGSC) transcript variants annotated in this work. This strategy provided a refined dsRNA trigger that increased mortality with a three-fold decrease in dsRNA amounts compared to the primary VGSC dsRNA construct. Thus, we demonstrated the use of RNA interference (RNAi) to increase susceptibility of adult mosquitoes to a widely used pyrethroid insecticide. Small RNA sequences from 5 mosquitoes treated with Random or VGSC dsRNAs were generated using Illumina HiSeq 2500.
ORGANISM(S): Aedes aegypti
SUBMITTER: Eyal Maori
PROVIDER: E-GEOD-84030 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA