Project description:Intra-individual tumoral heterogeneity (ITH) is a hallmark of solid tumors and impedes accurate genomic diagnosis and selection of proper therapy. The purpose of this study was to identify ITH of ovarian serous adenocarcinomas (OSAs) and to determine the utility of ascitic cancer cells as a resource for mutation profiling in spite of ITH. We performed whole-exome sequencing, copy number profiling, and DNA methylation profiling of four OSA genomes using multiregional biopsies from 13 intraovarian lesions, 12 extraovarian tumor lesions (omentum/peritoneum), and ascitic cells. We observed substantial levels of heterogeneity in mutations and copy number alterations (CNAs) of the OSAs. We categorized the mutations into 'common', 'shared' and 'private' according to the regional distribution. Six common, 8 shared, and 24 private mutations were observed in known cancer-related genes,. but common mutations had a higher mutant allele frequency and included TP53 mutations in all four OSAs. Region-specific chromosomal amplifications and deletions involving BRCA1, PIK3CA, and RB1 were also identified. Of note, the mutations detected in ascitic cancer cells represented 92.3-100% of overall somatic mutations in the given case. Phylogenetic analyses of ascitic genomes predicted a polyseeding origin of somatic mutations in ascitic cells. Our results demonstrate that despite ITH, somatic mutations, CNAs, and DNA methylations in both â??commonâ?? category and cancer-related genes were highly conserved in ascitic cells of OSAs, highlighting the clinical relevance of genome analysis of ascitic cells. Ascitic tumor cells may serve as a potential resource to discover somatic mutations of primary OSA with diagnostic and therapeutic relevance. Genome wide DNA methylation profiling of ascitic cells as well as biopsies from ovarian serous adenocarcinomas cases obtained by Illumina Infinium 450k Human DNA methylation Beadchip Bisulphite converted DNA from the 16 samples were hybridized to the Illumina Infinium 450k Human Methylation Beadchip
Project description:The DNA methylation value in early-stage hepatocellular carcinoma was undetermined. The Illumina Infinium 450k Human DNA methylation Beadchip was used to identify recurrence-related abbrent CpG methylation. This study was performed in a total of 66 early-stage HCC samples, including 29 recurrence samples and 37 recurrence-free samples
Project description:Illumina Infinium MethylationEPIC BeadChip array files from phaeochromocytoma, paraganglioma tumours of different genotypes and normal adrenal medulla control samples. This is the first study using high-resolution MethylationEPIC arrays and also includes a large number of Cluster 1 tumours (n=16) which exhibit extensive epigenetic deregulation.
Project description:DNA methylation likely plays a role in the regulation of human stress reactivity. In a genome-wide analysis of blood DNA methylation in 85 healthy individuals a locus in the Kit ligand (KITLG) gene (cg27512205) had the strongest association with cortisol stress reactivity (p=5.8x10-6). Replication was obtained in two independent samples, one using blood (N=45, p=0.001) and the other using buccal cells (N=255,p=0.004). KITLG methylation strongly mediated the relationship between childhood trauma and cortisol stress reactivity (32% mediation). Its genomic location (CpG island shore within an H3K27ac enhancer mark) provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability. Bisulphite converted DNA from whole blood of 85 healthy controls exposed to psychosocial stress task (TSST-G) was hybridised to the Illumina Infinium 450k Human Methylation Beadchip The DOI for this paper will be 10.1038/NCOMMS10967.
Project description:Intra-individual tumoral heterogeneity (ITH) is a hallmark of solid tumors and impedes accurate genomic diagnosis and selection of proper therapy. The purpose of this study was to identify ITH of ovarian serous adenocarcinomas (OSAs) and to determine the utility of ascitic cancer cells as a resource for mutation profiling in spite of ITH. We performed whole-exome sequencing, copy number profiling, and DNA methylation profiling of four OSA genomes using multiregional biopsies from 13 intraovarian lesions, 12 extraovarian tumor lesions (omentum/peritoneum), and ascitic cells. We observed substantial levels of heterogeneity in mutations and copy number alterations (CNAs) of the OSAs. We categorized the mutations into 'common', 'shared' and 'private' according to the regional distribution. Six common, 8 shared, and 24 private mutations were observed in known cancer-related genes,. but common mutations had a higher mutant allele frequency and included TP53 mutations in all four OSAs. Region-specific chromosomal amplifications and deletions involving BRCA1, PIK3CA, and RB1 were also identified. Of note, the mutations detected in ascitic cancer cells represented 92.3-100% of overall somatic mutations in the given case. Phylogenetic analyses of ascitic genomes predicted a polyseeding origin of somatic mutations in ascitic cells. Our results demonstrate that despite ITH, somatic mutations, CNAs, and DNA methylations in both âcommonâ category and cancer-related genes were highly conserved in ascitic cells of OSAs, highlighting the clinical relevance of genome analysis of ascitic cells. Ascitic tumor cells may serve as a potential resource to discover somatic mutations of primary OSA with diagnostic and therapeutic relevance. The purpose of this study was to identify intra-individual tumor heterogenety of ovarian serous adenocarcinomas Four to nine different ovarian cancer areas from intraovarian and extra-ovarian lesions that were at least 1cm apart as well as 50 ml ascites were collected from the four OSA patients. Genomic DNA from tumor and matched normal samples were simultaneously hybridized onto the array. Total 29 array experiments were conducted.
Project description:Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time. Therefore, we used Infinium HumanMethylation 450K BeadChip arrays to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases. Infinium HumanMethylation 450K BeadChip arrays were used to explore DNA methylation profiles of endometrial tissues from mid secretory cycle phase from 17 patients without endometriosis
Project description:Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time. Therefore, we used Infinium HumanMethylation 450K BeadChip arrays to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases. Infinium HumanMethylation 450K BeadChip arrays were used to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases from 24 patients with endometriosis
Project description:Impaired ability of insulin to stimulate cellular glucose uptake and regulate metabolism, that is insulin resistance (IR), links adiposity to metabolic disorders such as type 2 diabetes (T2D), dyslipidemia and cardiovascular disease (Langenberg, 2012). Both genetic and epigenetic factors are implicated in development of systemic IR (Vaag, 2001). IR is characterized by elevated levels of fasting insulin in the general circulation. The aim of this study is to explore whether white adipose tissue (WAT) epigenetic dysregulation is associated with systemic IR by global CpG methylation and gene expression profiling in subcutaneous and visceral adipose tissue. A secondary aim is to determine whether the DNA methylation signature in peripheral blood mononuclear cells reflect WAT methylation, and can be used as marker for systemic IR. DNA methylation was analyzed in DNA extracted from SAT (subcutaneous adipose tissue) and VAT (visceral adipose tissue) pieces, as well as PBMCs (peripheral blood mononuclear cells), using the Infinium Human Methylation 450 BeadChip assay. This data is from PBMCs.