Transcription profiling of mouse IL-10 -/- macrophages treated with LPS/LPS plus IL10 reveals a transcriptional repressor and co-repressor induced by the STAT3-regulated anti-inflammatory signaling pathway.
Ontology highlight
ABSTRACT: IL-10 regulates anti-inflammatory signaling via the activation of STAT3, which in turn controls the induction of a gene expression program whose products execute inhibitory effects on pro-inflammatory mediator production. Here we show that IL-10 induces the expression of an ETS family transcriptional repressor, ETV3 and a helicase family co-repressor, SBNO2 (Strawberry notch homolog 2) in mouse and human macrophages. IL-10-mediated induction of ETV3 and SBNO2 expression was dependent upon both STAT3, and co-stimulus through the TLR pathway. We also observed that ETV3 expression was strongly induced by the STAT3 pathway induced by IL-10 but not STAT3 signaling activated by IL-6, which cannot activate the anti-inflammatory signaling pathway. ETV3 and SBNO2 specifically repressed NF-kB-mediated transcription and can physically interact. Collectively our data suggest that ETV3 and SBNO2 are components of the pathways that contribute to the downstream anti-inflammatory effects of IL-10. We compared expression profiles of macrophages isolated from IL-10 -/- mice. Macrophages were treated with either LPS or LPS plus IL-10. Treatment times were 10, 20 and 30 minutes. Experiment Overall Design: Mouse IL-10 -/- macrophages were isolated and purified and set up in culture medium containing LPS or LPS plus IL-10. A total of 18 samples were analyzed. This set contains three replicates of each treatment condition where treatment (LPS versus LPS plus IL-10) and time (10min, 20min and 30min) were varied.
ORGANISM(S): Mus musculus
SUBMITTER: Peter Murray
PROVIDER: E-GEOD-9509 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA