Transcription profiling of Vitis vinifera cv. Cabernet-Sauvignon leaves obtained from plants grown in different enviroments and infected with vascular ascomycete fungus Eutypa lata.
Ontology highlight
ABSTRACT: Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays analysis were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays bearing 14,500 probes were used to compare between three experimental conditions (in vitro, greenhouse, vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S-R+), and healthy plants (S-R-). These plants were characterized by symptoms notation after natural (vineyard) or experimental (in vitro, greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative RT-PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (E. necator, P. viticola, B. cinerea). (i) Five functional categories including metabolism, defense reactions, interaction with environment, transport and transcription were up-regulated in S+R+ plants compared to S-R- plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also upregulated after infection by powdery mildew, downy mildew and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and Eutypa secreted polypeptide fraction.
ORGANISM(S): Vitis vinifera
DISEASE(S): E. lata infected plant without symptoms
SUBMITTER: Christian Kappel
PROVIDER: E-MEXP-2337 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA