CLIP-Seq experiment of Escherichia coli RelA wild type and RelA::C289Y mutant strains to identify specific RNAs that bind RelA
Ontology highlight
ABSTRACT: In this experiment, we carried out a global analysis of specific RNAs that are bound to the RelA protein. CLIP-Seq experiment was carried out with E. coli RelA wild type and RelA::C289Y mutant strains. Libraries were prepared and high throughput sequencing was done.
Project description:We report dynamics of X-chromosome upregulation (XCU) along X-chromosome inactivation (XCI) in mESCs as they differentiate into EpiSCs. F1 hybrid C57BL6/J × CAST/EiJ male and female mESCs were grown in serum/LIF conditions were differentiated using Fgf2 and Activin A for 1, 2, 4 and 7 days to induce random XCI in female cells. Multi-modal single-cell sequencing was performed using scATAC on nuclei and Smart-seq3 to assay chromatin accessibility and poly-A+ RNA expression, respectively. Allelic resolution is achieved using strain-specific SNPs in the data. We reveal dynamic balancing of X alleles as cells undergo XCI to compensate dosage imbalances between sexes as well as between X and autosomes. Furthermore, we reveal that female naïve mESCs with two active X chromosomes lack XCU on both alleles which has major implications for reprogramming studies. Finally, we estimate allelic transcriptional burst kinetics from the data and find that progressively increased burst frequencies underlies the XCU process.
Project description:SOX6 CUT&RUN on HUDEP1 over expressing SOX6-Flag. The experiment is done using and anti Flag Ab to assist the genome wide binding profile of SOX6 in HUDEP1 (Human Umbilical cord blood-Derived Erythroid Progenitor-1).
Project description:To test the chromatin accessibility of different immune cell subsets, we isolated CD4+T cells, CD8+T cells, CD19+B cells and CD14+ monocytes from human PBMCs and performed ATAC assay.
Project description:Wnt/β-catenin signaling is a highly organized biochemical cascade that triggers a gene expression program in the signal-receiving cell. The Wnt/β-catenin-driven transcriptional response is involved in virtually all cellular processes during development, homeostasis, and its deregulation causes human disease. However, outstanding questions remain unanswered. A first question concerns cell-specificity: how this response is integrated into lineage-specific choices is still unknown. A second question concerns time: it is not known whether β-catenin associates with its targets simultaneously or in a time-dependent fashion. For instance, while TCF/LEF and other components of the Wnt transcriptional complex are constitutively associated with the chromatin, it is β-catenin arrival, upon Wnt induction, that launches target genes transcription. Therefore, discovering the dynamics of the genome-wide β-catenin binding pattern is required to unambiguously define the direct targets of Wnt signaling To address these questions, we realized a time-resolved atlas of β-catenin genome-wide occupancy in two human cell types, human embryonic kidney cells 293T (HEK293T) and human embryonic stem cells (hESCs). To this end, we treated HEK293T and hESCs with the GSK3 inhibitor/Wnt activator CHIR99021 (10 mM) for 3 days, and assessed β-catenin binding via CUT&RUN-LoV-U (Zambanini et al., 2022) 90 minutes, 4 hours, 24 hours and 3 days after the onset of the stimulation. This approach allowed us to establish that β-catenin repositions to different genomic loci along stimulation time, showing that a definition of Wnt target genes must take into account the time-dimension. Moreover, β-catenin physical targets are largely cell-type specific, as only a subset of them is present across the examined contexts.
Project description:Joint profiling of chromatin accessibility and gene expression from the same single cell provides critical information about cell types in a tissue and cell states during a dynamic process. These emerging multi-omics techniques help the investigation of cell-type resolved gene regulatory mechanisms. Here, we developed in situ SHERRY after ATAC-seq (ISSAAC-seq), a highly sensitive and flexible single cell multi-omics method to interrogate chromatin accessibility and gene expression from the same single cell. We demonstrated that ISSAAC-seq is sensitive and provides high quality data with orders of magnitude more features than existing methods. Using the joint profiles from thousands of nuclei from the mouse cerebral cortex, we uncovered major and rare cell types together with their cell-type specific regulatory elements and expression profiles. Finally, we revealed distinct dynamics and relationships of transcription and chromatin accessibility during an oligodendrocyte maturation trajectory.
Project description:In this experiment, we've examined chromatin conformation of mESCs and 2C-like cells generated from a CAF-1 knockdown. The method to generate the knockdown was described in (). We performed a modified in situ Hi-C protocol from (Rao et al., 2014) and that can be found in detail at (Díaz et al., 2017, under revision). Samples were digested with MboI restriction enzyme having as starting material 100k cells with two biological replicates per sampling point. The aim of the experiment was to analyze the potential chromatin conformational changes that accompany the mESC to 2C-like transition.
Project description:The present microarray studies the differential transcription levels of various genes upon overexpression of tumor suppressor protein SMAR1. The results will lead us to potential targets which are either up/downregulated by SMAR1. Experiment Overall Design: Agilent two-color experiment,Organism: Human ,Slides, Agilent’s Human Microarray G4110B with 22000 features, Labeling kit: Agilents Low input RNA linear amplification Kit Cat # 5184-3523, Labeling Method: T7 promoter based-linear amplification to generate labeled complementary RNA
Project description:The spinal cord neural stem cell potential is contained within the ependymal cells lining the central canal. Ependymal cells are, however, heterogeneous and we know little about what this reflects. To gain new insights into ependymal cell heterogeneity, we microdissected the ependymal cell layer from the thoracic spinal cord of 4 FOXJ1-EGFP transgenic mice (2.5-to-3-month old). After after dissociating the tissue into a cell suspension, we sorted single GFP-positive ependymal cells into lysis plates. cDNA synthesis was performed using Smart-seq2 technology.
Project description:We previously demonstrated that inactivation of the replication checkpoint via a mec1 mutation led to chromosome breakage at replication forks initiated from virtually all origins of replication, after transient exposure to hydroxyurea (HU), an inhibitor of ribonucleotide reductase. Furthermore, we have shown that chromosomes break at replication forks that have suffered single-stranded DNA (ssDNA) formation. Here we sought to determine whether all replication forks containing ssDNA gaps have equal probability of producing double strand breaks (DSBs) when cells attempt to recover from HU exposure. We devised a new methodology, Break-Seq, that combines our previously described DSB labeling with NextGen sequencing to map chromosome breaks with improved sensitivity and resolution. We show that DSBs preferentially occur at genes transcriptionally induced by HU. Notably, different subsets of the HU-induced genes produced DSBs in MEC1 and mec1 cells as replication forks traversed greater distance in MEC1 cells than in mec1 cells during the recovery from HU. Specifically, while MEC1 cells exhibited chromosome breakage at stress-response transcription factors, mec1 cells predominantly suffered chromosome breakage at transporter genes, many of which are the substrates of the said transcription factors. We propose that HU-induced chromosome fragility arises at higher frequency near HU-induced genes as a result of destabilized replication forks encountering transcription factor binding and/or the act of transcription. Our model provides an explanation for a long-standing problem in chromosome biology: why different replication inhibitors produce different spectra of chromosome breakage? We propose that different inhibitors elicit different transcription responses as well as destabilize replication forks, and, when the two processes collide, ssDNA at the replication fork suffers further strand breakage, causing DSBs. We queried the yeast genome for DSBs after cells were treated with 200 mM hydroxyurea during S phase. Samples were collected from 1) cells synchronized in G1 phase by alpha factor; 2) cells released from G1 into medium containing 200 mM hydroxyurea for 1 h; 3) cells recovering in fresh medium without hydroxyurea for 1 h after the 1 h exposure to HU. These samples are referred to as G1, HU 1h, and R 1h, respectively. The strains from which the samples were collected are indicated following the time point, e.g. G1_MEC1 or R 1h_mec1. The experiment with mec1 was done twice (Experiments A and B) and that with MEC1 was done once (Experiment C). In addition, a control experiment of in vitro digestion with BamHI using the G1_mec1 sample (G1_BamHI) was performed.
Project description:Using ChIP-Seq analysis we define genes induced in macrophages through synergistic transcriptional activation by NFkB and the IFNb-activated transcription factor ISGF3.