Project description:High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients' metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients' samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients' specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method provides a powerful instrument for precision oncology in ovarian cancer.
Project description:Prostate cancers of luminal adenocarcinoma histology display a range of clinical behaviors. Although most prostate cancers are slow-growing and indolent, a proportion is aggressive, developing metastasis and resistance to androgen deprivation treatment. One hypothesis is that a portion of aggressive cancers initiate from stem-like, androgen-independent tumor-propagating cells. Here we demonstrate the in vitro creation of a mouse cell line, selected for growth as self-renewing stem/progenitor cells, which manifests many in vivo properties of aggressive prostate cancer. Normal mouse prostate epithelium containing floxed Pten and TP53 alleles was subjected to CRE-mediated deletion in vitro followed by serial propagation as protospheres. A polyclonal cell line was established from dissociated protospheres and subsequently a clonal daughter line was derived. Both lines demonstrate a mature luminal phenotype in vitro. The established lines contain a stable minor population of progenitor cells with protosphere-forming ability and multi-lineage differentiation capacity. Both lines formed orthotopic adenocarcinoma tumors with metastatic potential to lung. Intracardiac inoculation resulted in brain and lung metastasis, while intra-tibial injection induced osteoblastic bone formation, recapitulating the bone metastatic phenotype of human prostate cancer. The cells showed androgen receptor dependent growth in vitro. Importantly, in vivo, the deprivation of androgens from established orthotopic tumors resulted in tumor regression and eventually castration-resistant growth. These data suggest that transformed prostate progenitor cells preferentially differentiate toward luminal cells and recapitulate many characteristics of the human disease.
Project description:Ovarian cancer is the most lethal gynecological cancer, where survival rates have had modest improvement over the last 30 years. Metastasis of cancer cells is a major clinical problem, and patient mortality occurs when ovarian cancer cells spread beyond the confinement of ovaries. Disseminated ovarian cancer cells typically spread within the abdomen, where ascites accumulation aids in their transit. Metastatic ascites contain multicellular spheroids, which promote chemo-resistance and recurrence. However, little is known about the origin and mechanisms through which spheroids arise. Using live-imaging of 3D culture models and animal models, we report that epithelial ovarian cancer (EOC) cells, the most common type of ovarian cancer, can spontaneously detach as either single cells or clusters. We report that clusters are more resistant to anoikis and have a potent survival advantage over single cells. Using in vivo lineage tracing, we found that multicellular spheroids arise preferentially from collective detachment, rather than aggregation in the abdomen. Finally, we report that multicellular spheroids from collective detachment are capable of seeding intra-abdominal metastases that retain intra-tumoral heterogeneity from the primary tumor.
Project description:Total RNA was extracted using TRIzol from PEO4 and OVCAR-3 cells treated for 72 hours with 10uM GSK6853 or DMSO as a control. In case of BRPF1 silencing experiment, RNA extraction was performed from cells transfected with BRPF-targeting siRNA or nontarget (scramble) siRNA 96 hours post-transfection using TRIzol and Zymo RNA Clean & Concentrator-5 columns. Indexed libraries were prepared starting from 1000 ng of total RNA according to Illumina Stranded Total RNA prep Ligation with Ribo-Zero Plus kit. Final libraries were sequenced at a concentration of 0,6 pM/lane on the Illumina Novaseq 6000 using S4 flowcell and v1.5 reagents. The current study was focused on the investigation of molecular mechanisms underlying the antiproliferative effect of BRPF1 inhibition or silencing in ovarian cancer. To this end, transcriptome changes induced by GSK6853 treatment in chemotherapy-resistant PEO4 and OVCAR-3 cells and BRPF1 silencing in OVCAR-3 cells were analysed.
Project description:Recently the cancer stem cell (CSC) model has been put forward to describe how a subset of cells within the tumor is responsible for tumor growth and heterogeneity. Wilms' tumor (WT), the most common pediatric renal malignancy, arises from developmentally arrested early renal progenitors. WT NCAM1+ALDH1+ CSCs have been recently isolated and shown to localize to tumor blastema. Herein by generating 'blastema'-only WT xenografts composed solely by cells expressing the SIX2 and NCAM1 embryonic renal stem cell markers, we surprisingly show that sorted ALDH1+ WT CSCs are phenotypically not the earliest renal stem cells. Rather, gene expression and proteomic comparative analysis disclose a more differentiated self-renewing epithelial cell type than bulk of the blastema. Thus, WT CSCs do not represent the transformed counterpart of the most primitive renal stem cell being more differentiated than the presumable WT cell of origin and are likely to de-differentiate to propagate the tumor blastema. We used Wilms tumor Xns, as well as, fetal renal tissue originally obtained from a patients or aborted fetus
Project description:Transcription profiles of self renewing erythroblast cultures isolated from both the restricted and extensively self-renewing phases of growth. The samples are paired.
Project description:The human endometrium is essential in providing the site for implantation and maintaining the growth and survival of the conceptus. An unreceptive endometrium and disrupted maternal-conceptus interactions can cause infertility due to pregnancy loss or later pregnancy complications. Despite this, the role of uterine glands in first trimester human pregnancy is little understood. An established organoid protocol was used to generate and comprehensively analyze 3-dimensional endometrial epithelial organoid (EEO) cultures from human endometrial biopsies. The derived EEO expand long-term, are genetically stable, and can be cryopreserved. Using endometrium from 2 different donors, EEO were derived and then treated with estrogen (E2) for 2 d or E2 and medroxyprogesterone acetate (MPA) for 6 d. EEO cells were positive for the gland marker, FOXA2, and exhibited appropriate hormonal regulation of steroid hormone receptor expression. Real-time qPCR and bulk RNA-sequencing analysis revealed effects of hormone treatment on gene expression that recapitulated changes in proliferative and secretory phase endometrium. Single-cell RNA sequencing analysis revealed that several different epithelial cell types are present in the EEO whose proportion and gene expression changed with hormone treatment. The EEO model serves as an important platform for studying the physiology and pathology of the human endometrium.