Project description:Our understanding of how human skin cells differ according to body site and tumour formation is limited. To address this we have created a multi-scale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single cell RNA sequencing, spatial global transcriptional profiling and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retain signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling during cancer neovascularization. Our findings suggest that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.
Project description:Single-cell RNAseq (scRNAseq) and paired VDJ analysis and spatial transcriptomics, we create the first comprehensive cell atlas of the healthy developing, paediatric and adult human gut, including 347,980 cells from up to 10 distinct anatomical sites. We use this data to trace the cellular composition of the gut throughout life, define novel cell markers and cell-cell interactions. We find four neuronal cell populations in the developing enteric nervous system, with expression patterns indicative of irritable bowel syndrome and Hirschsprung’s disease, and identify key cell players and communication networks initiating lymphoid structure formation in early human development.
Project description:This data is from healthy skin tissue and has been used as a reference to compare diseased datasets. The dataset is from experiments of spatial transcriptomics.
Project description:Fetal lung samples at 12–20 post conception week (pcw) from the HDBR, up to 0.5cm3 in size, were embedded in OCT and flash-frozen in dry-ice cooled isopentane. Twelve-micron cryosections were cut onto Visium slides, haematoxylin and eosin stained and imaged at 20X magnification on a Hamamatsu Nanozoomer 2.0 HT Brightfield. These were then further processed according to the 10X Genomics Visium protocol, using a permeabilization time of 18 min for 12–17 pcw samples and 24 min for 19 pcw and older samples. Images were exported as tiled tiffs for analysis. Dual-indexed libraries were prepared as in the 10X Genomics protocol, pooled at 2.25 nM and sequenced in 4 samples per Illumina Novaseq SP flow cell with read lengths of 28 bp for R1, 10 bp for i7 index, 10 bp for i5 index, 90 bp for R2.
Project description:Human uterine samples were analysed using Visium technology (10X Genomics) to generate a cellular 2D map of the endometrium to study its temporal and spatial changes across the menstrual cycle. Dataset comprises 4 samples from two women in their reproductive age.