Project description:B cells from tonsils of human donors were extracted for combined RNAseq+ATACseq from the same cell. One sample was prepared separately ("old") and is of lower quality, but still included. It primarily holds ATACseq information.
Project description:We generated Multiome RNA+ATAC data from the same cell from human PBMC. This served as a gold benchmark for a novel integration method for multi-omics data that we developed.
Project description:We generated Multiome RNA+ATAC data from the same cell from human PBMC. This served as a gold benchmark for a novel integration method for multi-omics data that we developed.
Project description:This study looks at the ATAC+RNA profiles of human CD4 T cells under bioreactor-like conditions as ACT. Cells were stimulated toward Th1,Th2,Treg and Th17 under anti-CD3/28 activation, and profiled on day 5.
Project description:In these experiments, we aimed to investigate the role of cardiomyocyte-specific deletion of the G-quadruplex resolvase Dhx36 in heart development and cardiomyocyte differentiation. To achieve this, we conducted multi-omics analysis using single-nuclei RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) on hearts from postnatal day 7 (PD7) wild-type (WT) and Dhx36 conditional knockout (cKO) mice. Our findings reveal that Dhx36 plays a critical role in the development of the cardiac conduction system (CCS) and in the differentiation of both CCS and working cardiomyocytes
Project description:In these experiments, we aimed to investigate the role of cardiomyocyte-specific deletion of the G-quadruplex resolvase Dhx36 in heart development and cardiomyocyte differentiation. To achieve this, we conducted multi-omics analysis using single-nuclei RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) on hearts from postnatal day 7 (PD7) wild-type (WT) and Dhx36 conditional knockout (cKO) mice. Our findings reveal that Dhx36 plays a critical role in the development of the cardiac conduction system (CCS) and in the differentiation of both CCS and working cardiomyocytes
Project description:Here, we performed multiome sequencing (snRNA-seq + snATAC-seq) of human fetal liver samples from 3 trisomy 21 (Ts21) and 3 healthy foetuses (median age 14 post-conception weeks). The data set is composed of approximately 60,000 CD45+ foetal liver cells.
Project description:Cancer is a heterogeneous disease, where multiple, phenotypically distinct subpopulations co-exist. Tumour evolution is a result of a complex interplay of genetic and epigenetic factors. To predict the molecular drivers of distinct cancer responses, we apply single-cell lineage tracing (scRNA-Seq of barcoded cells) on a triple-negative breast cancer model. SUM159PT cells infected with a lentiviral barcode library (Perturb-seq Library) were sorted according to the presence of BFP signal, treated or not with paclitaxel (PTX), and then processed by scRNA-Seq or Multiome.
Project description:Using Multiome and previously published sc/snRNA-seq data, we studied eight anatomical regions of the human heart including left and right ventricular free walls (LV and RV), left and right atria (LA and RA), left ventricular apex (AX), interventricular septum (SP), sino-atrial node (SAN) and atrioventricular node (AVN). For the first time, we profile the cells of the human cardiac conduction system, revealing their distinctive repertoire of ion channels, G-protein coupled receptors and cell-cell interactions. We map the identified cells to spatial transcriptomic data to discover cellular niches within the eight regions of the heart.
Project description:We obtained human embryonic and fetal lungs from 5-22 pcw for scRNAseq and scATACseq analysis. To focus on epithelial differentiation and region specialization, we deeply sampled 15, 18, 20 and 22 pcw lungs and separated proximal and distal regions while leaving lungs at 5, 6, 9 and 11 pcw intact. These cell samples (except for one at 6pcw) were split and processed for both scRNAseq and scATACseq.