Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

P12365 - A/J COPD - Parenchyma


ABSTRACT: Chronic Obstructive Pulmonary Disease (COPD) is a respiratory disorder that is the result of extended exposure of the airways to noxious stimuli, principally cigarette smoke (CS). The mechanisms through which COPD evolves are not fully understood though it is believed that the disease process includes a genetic component since not all smokers develop COPD. To investigate the mechanism leading to the development of COPD/emphysema, we performed an experiment in which whole genome gene expression and several COPD-relevant biological endpoints (MMP-9, MMP activity, TIMP-1 and lung weight) were measured in lung tissue after exposure to two doses of CS for various periods of time. A novel and powerful method, known as reverse engineering and forward simulation (REFS(TM)), was employed to identify key molecular drivers by integrating gene expression data and 4 measured COPD-relevant endpoints. An ensemble of molecular networks was generated using REFS(TM). Simulations showed that this ensemble could successfully recover the measured experimental data for gene expression and measured COPD-relevant endpoints. This ensemble of networks was then further employed to simulate thousands of in silico gene knockdown experiments. Based on the in silico gene knockdown, thirty-three molecular key drivers for the above four COPD-relevant endpoints were identified, with the majority of them being enriched in inflammation, emphysema and COPD.

INSTRUMENT(S): Affymetrix GeneChip Scanner 3000 7G

ORGANISM(S): Mus musculus

SUBMITTER: Sam Ansari 

PROVIDER: E-MTAB-1426 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2010-09-04 | GSE23704 | GEO
2016-03-24 | E-GEOD-10038 | biostudies-arrayexpress
2016-01-22 | GSE69818 | GEO
2016-03-24 | GSE10038 | GEO
2012-06-26 | E-GEOD-38974 | biostudies-arrayexpress
2012-06-27 | GSE38974 | GEO
2004-06-01 | GSE1122 | GEO
2017-02-18 | GSE93898 | GEO
2024-11-19 | GSE218813 | GEO
2010-09-04 | E-GEOD-23704 | biostudies-arrayexpress