DNA Methylation Profiles Define Stem Cell Identity and Reveal a Tight Embryonic-Extraembryonic Lineage Boundary
Ontology highlight
ABSTRACT: Embryonic (ES) and epiblast (EpiSC) stem cells are pluripotent but committed to an embryonic lineage fate. Conversely, trophoblast (TS) a nd extraembryonic endoderm (XEN) stem cells contribute predominantly to tissues of the placenta and yolk sac, respectively. Here we show that each of these four stem cell types is defined by a unique DNA methylation profile. Despite their distinct developmental origin, TS and XEN cells share key epigenomic hallmarks, chiefly characterized by robust DNA methylation of embryo-specific developmental regulators, as well as a subordinate role of 5-hydroxymethylation. We also observe a substantial methylation reinforcement of pre-existing epigenetic repressive marks that specifically occurs in extraembryonic stem cells compared to in vivo tissue, presumably due to continued high Dnmt3b expression levels. These differences establish a major epigenetic barrier between the embryonic and extraembryonic stem cell types. In addition, epigenetic lineage boundaries also separate the two extraembryonic stem cell types by mutual repression of key lineage-specific transcription factors. Thus, global DNA methylation patterns are a defining feature of each stem cell type that underpin lineage commitment and differentiative potency of early embryo-derived stem cells. Our detailed methylation profiles identify a cohort of developmentally regulated sequence elements, such as orphan CpG islands, that will be most valuable to uncover novel transcriptional regulators and pivotal M-^QM-^QgatekeeperM-^RM-^R genes in pluripotency and lineage differentiation.
INSTRUMENT(S): Illumina Genome Analyzer Iix
ORGANISM(S): Mus musculus
SUBMITTER: Felix Krueger
PROVIDER: E-MTAB-1754 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA