Project description:Infectious hematopoietic necrosis virus (IHNV) is a virus of the genus Novirhabdovirus and the causative agent of infectious hematopoietic necrosis (IHN), one of the most serious threats to salmonid fishes. IHN outbreaks can cause more than 80% mortality rates in certain cases. Studying the transcriptional responses to the secondary immunization with a live attenuated IHNV vaccine will help us understand how fish previously immunized respond when they encounter again the same pathogen and how effective this type of vaccination is.This experiment was aimed at understanding the transcriptomic response of rainbow trout to an IHNV secondary nasal vaccination.
Project description:In mammals, increasing data suggests that there exists a complex and bi-directional relationship between thyroid and immune systems. However the existence of such interactions in fish is unknown. Here, we administered the biologically active hormone 3.3�.5-triiodo-L-thyronine (T3) and the anti-thyroid drug, propilthiouracil (PTU) to juvenile rainbow trout and examined the head kidney expression profile with a custom-made microarray enriched in immune-related genes. A seven day-experiment was performed. Fish were divided in 3 groups. First group received 20 µg/g fish feed of T3; second group received 5000 µg/g fish feed of PTU; third group served as control. After 7 days orally administering T3 or PTU, differentially expressed transcript levels from selected immune-related rainbow trout genes were studied in head kidney. Three groups were studied (T3-treated, PTU treated and control), each group having 4 biological replicates (each replicate consisting of 2 pooled fish).
Project description:The aim of this sequencing experiment was to make available tissue expression panels for selected fish species for comparative expression studies between the species. Tissue samples were collected for zebrafish (Danio rerio), medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss). Tissue types included liver, skin, muscle, heart, gut, gill, eye, brain for all three species, with additionally pyloric caeca, kidney, head kidney, and spleen for rainbow trout. Only liver samples were taken in replicate of four or three for rainbow trout. All fish were raised under standard rearing conditions for the species. Total RNA was extracted from the tissue samples and paired‐end sequencing of sample libraries was completed on an Illumina HiSeq 2500 with 125‐bp reads. Processed count tables per species as raw counts, FPKM, or TPM, were generated from read alignment to the Ensembl genomes of the respective species using STAR and gene level counting using RSEM and Ensembl gene annotation.
Project description:Myxozoans are widely distributed aquatic obligate endoparasites that were recently recognized as belonging within the phylum Cnidaria. They have complex life cycles with waterborne transmission stages: resistant, infectious spores that are unique to myxozoans. However, little is known about the processes that give rise to these transmission stages. To understand the molecular underpinnings of spore formation, we conducted proteomics on Ceratonova shasta, a highly pathogenic myxozoan that causes severe mortalities in wild and hatchery-reared salmonid fishes. We compared proteomic profiles between developmental stages from inside the fish host, and the mature myxospore, which is released into the water where it drifts passively, ready to infect the next host. We found that C. shasta contains 2123 proteins; representing the first proteomic catalog of a myxozoan myxospore. Analysis of proteins differentially expressed between developing and mature spore stages uncovered processes that are active during spore formation. Our data highlight dynamic changes in the actin cytoskeleton, which provides myxozoan developmental stages with mobility through lamellipodia and filopodia, whereas in the mature myxospore the actin network supports F-actin stabilization that reinforces the transmission stage. These findings provide molecular insight into the myxozoan life cycle stages and, particularly, into the process of sporogenesis.
Project description:In this study we tested the effects of Se supplemented as Sel-Plex during an immune challenge induced by polyinosinic:polycytidylic acid (poly(I:C)), a double stranded RNA that mimics to some degree a viral infection. Trout were fed a diet enriched with 4 ppm of Sel-Plex and a commercial diet for the control group, 3 tanks were assigned to each diet group. Half fish in each tank were injected intra-peritonealy (i.p.) either with poly(I:C) or PBS. A whole transcriptomic analysis was carried out by microarray analysis to examine whether Sel-Plex alter fish induced antiviral response, with head kidney (HK) and liver being the two target tissues in this study. All the experimental samples were labelled with Cy3 dye, and their expression was normalised against a common control resulted from a equimolar mix of RNA from all the experimental samples labelled with Cy5 dye
Project description:We describe here transcripts induced after intraperitoneal injection of rainbow trout with 2 different viruses, both belonging to strain 23.75 of viral hemorrhagic septicemia virus (VHSV): a deleted Nv gene (dNV) virus and a wild type (wt) virus. Two days after infection, differentially expressed transcript levels from selected immune-related trout genes were studied in internal organs (spleen and head kidney). Fishes were divided in two groups (3 fishes per group). The first group was intraperitoneally injected with 100000 pfu per trout of dNV VHSV, while the second group was injected with 100000 pfu/trout of wt VHSV. All fishes were sacrificed two days post infection.
Project description:We constructed a targeted cDNA microarray consisting of 147 rainbow trout (Oncorhynchus mykiss) genes with known function to examine the transcriptional response to a standardized handling stress.
Project description:Prymnesium parvum is regarded as one of the most notorious harmful algal bloom (HAB) species worldwide. In recent years, it has frequently formed toxic blooms in coastal and brackish waters of America, Europe, Australia, Africa and Asia, causing large-scale mortalities of wild and cultured fish and other gill-breathing animals. In the last decade, blooms of P. parvum have expanded to inland fresh waters in the USA, presumably due to changes in environmental conditions. The aim of the experiment was to establish the gill transcriptomic responses to P. parvum in rainbow trout. We used 2 different concentrations of P. parvum and identified fish with low and moderate responses to the algae. Based on the dose of and the fish response, fish were classified into 4 groups with high exposure/moderate response (HM), high exposure/low response (HL), low exposure/low response (LL) and control group (C) with no exposure/no response. Gene expression profiling of the gill tissue was performed using a microarray platform developed and validated for rainbow trout.
Project description:Stocking density is considered as a key factor determining the productivity of fish aquaculture systems. The transcriptomic response to crowding stress is, however, still poorly investigated. We aimed at the identification of potential biomarker genes via microarray analyses to get insight into molecular pathways modulated through density-induced stress in farmed rainbow trout Oncorhynchus mykiss. Transcriptome profiling in liver, kidney, and gills was complemented with behaviarol observation and analysis of classical plasma parameters. Individuals of two trout strains were exposed for eight days to definite stocking densities, 1 kg/m³ (low density); 10 kg/m³ (moderate); 18 kg/m³ (elevated); and 35 kg/m³ (high). Whereas stocking density had no significant effect on cortisol levels, plasma glucose levels were elevated in trout kept at high density. Pathway enrichment analyses confirmed the upregulation of HIF1a signaling in liver contributing to glucose homeostasis during stress conditions, while mTOR and PI3K/AKT signaling pathways were downregulated. Further perturbed hepatic pathways were involved in protein ubiquitination and the biosynthesis of cholesterol, retinol and glutathione. Three stocking density conditions were investigated: an uncrowded âmoderateâ density (MD: 10 kg trout/m³) , an elevated density (ED: 18 kg/m³ ), and high density (HD: 35 kg/m³). The experiment was performed twice with two strains of Steelhead rainbow trout (Troutlodge and Born trout), randomly assigned to identical glass tanks with MD (30 and 34 individuals), ED (60 and 64 individuals), and HD (120 and 140 individuals). Trout were sampled 8 d after experimental onset.
Project description:This experiment was aimed at understanding transcriptional response to a plant protein diet in multiple tissues of Atlantic salmon. Agilent-based microarray platform with 4 x 44 K probes per slide (Salar_2; Agilent Design ID:025520) oligo microarray was used in this experiment. A dual-labelled experimental design was employed for the microarray hybridisations. aRNA from each experimental sample (Cy3 labelled) was competitively hybridised against a common pooled-reference sample (Cy5 labelled), which comprised equal amounts of aRNA from each of the samples used in the study. This design permits valid statistical comparisons across all treatments to be made. The entire experiment comprised 24 hybridisations - 3 tissues (mid intestine, liver, muscle) x 2 treatments (MP diet / PP diet) x 4 biological replicates.