Project description:Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two ?-pleated sheets encoded by exon 2 were missing in the mutant structure, other ?-pleated sheets are largely unaffected by the deletion. However, nine novel ?-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.
Project description:Our data are useful to expand the molecular spectrum of AUTS2 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.
Project description:Our data are useful to expand the molecular spectrum of STAG1 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.
Project description:A female patient with neurodevelopmental disorder, craniofacial dysmorphisms carrying a novel heterozygous FOXP1 variant, c.1030C>T, p.(Gln344Ter). This variant was not found in the parents, which was consistent with de novo inheritance.
Project description:We identified a missense variant in PSMD12 gene, recently associated to an emerging syndromic form of NDD, in a patient with intellectual disability/speech delay, congenital anomalies and facial dysmorphisms. The variant described herein is useful to expand the molecular spectrum of heterozygous PSMD12 mutations and to provide insight into the molecular pathogenesis of this new condition since it is, to the best of our knowledge, the first missense substitution to date reported in medical literature. Finally, our patient is the one with the most detailed dysmorphic characterization and for this reason useful to start defining a typical facial gestalt that addresses the diagnosis.
Project description:Catechol dioxygenases in microorganisms cleave catechol into cis-cis-muconic acid or 2-hydroxymuconic semialdehyde via the ortho- or meta-pathways, respectively. The aim of this study was to purify, characterize, and predict the template-based three-dimensional structure of catechol 1,2-dioxygenase (C12O) from indigenous Pseudomonas chlororaphis strain UFB2 (PcUFB2). Preliminary studies showed that PcUFB2 could degrade 40 ppm of 2,4-dichlorophenol (2,4-DCP). The crude cell extract showed 10.34 U/mL of C12O activity with a specific activity of 2.23 U/mg of protein. A 35 kDa protein was purified to 1.5-fold with total yield of 13.02% by applying anion exchange and gel filtration chromatography. The enzyme was optimally active at pH 7.5 and a temperature of 30 °C. The Lineweaver⁻Burk plot showed the vmax and Km values of 16.67 µM/min and 35.76 µM, respectively. ES-MS spectra of tryptic digested SDS-PAGE band and bioinformatics studies revealed that C12O shared 81% homology with homogentisate 1,2-dioxygenase reported in other Pseudomonas chlororaphis strains. The characterization and optimization of C12O activity can assist in understanding the 2,4-DCP metabolic pathway in PcUFB2 and its possible application in bioremediation strategies.
Project description:In this communication, a case of black grain eumycetoma produced by the fungus C. atrobrunneum is reported. The patient was initially misdiagnosed with M. mycetomatis eumycetoma based on the grains' morphological and cytological features. However, further aerobic culture of the black grains generated a melanised fungus identified as C. atrobrunneum by conventional morphological methods and by internal transcribed spacer 2 (ITS2) ribosomal RNA gene sequencing. This is the first-ever report of C. atrobrunneum as a eumycetoma-causative organism of black grain eumycetoma. It is essential that the causative organism is identified to the species level, as this is important for proper patient management and to predict treatment outcome and prognosis.
Project description:The association of Comamonas kerstersii with peritonitis resulting from perforated appendix and its isolation from a psoas abscess and pelvic peritonitis have previously been described by us. We present the first case of C. kerstersii urinary tract infection, broadening the spectrum of infections caused by this species.