Project description:We analyzed the transcriptomic profile of EFR:XA21:GFP rice lines treated with elf18 to identify genes differentially regulated during this response. We sequenced cDNA from EFR:XA21:GFP leaves treated with 500 nM elf18 for 0.5, 1, 3, 6, and 12 h. We also included untreated EFR:XA21:GFP and Kitaake as controls. Note: All samples in SRA were assigned the same sample accession (SRS843490). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:In this study we used single-cell type transcriptomics to identify more than 4,000 differentially expressed (DE) genes that distinguish uniplanar protonematal tip cells from multiplanar gametophore bud cells in the moss Physcomitrella patens. While the transcriptomes of both tip and bud cells harbor molecular signatures of proliferative cells, the bud cell transcriptomes exhibit a wider variety of upregulated genes. Our data suggest that the combined expression of genes regulating shoot patterning and asymmetric cell division accompanied the transition from uniplanar to triplanar meristematic growth in moss.
Project description:Large scale transcriptomics study to establish gene expression in leaf tissue of W22 inbred line in Zea Mays. RNA was extracted from leaf tissue when the plants were at V6. Sequencing library was produced following the protocol mentioned in the following publication PMID:22039485
Project description:The pistillody mutant wheat (Triticum aestivum L.) plant HTS-1 exhibits homeotic transformation of stamens into pistils or pistil-like structures. Unlike common wheat varieties, HTS-1 produces three to six pistils per floret, potentially increasing the yield. Thus, HTS-1 is highly valuable in the study of floral development in wheat. In this study, we conducted RNA sequencing of the transcriptomes of the pistillody stamen (PS) and the pistil (P) from HTS-1 plants, and the stamen (S) from the non-pistillody control variety Chinese Spring TP to gain insights into pistil and stamen development in wheat.
Project description:We used RNA-Seq to systematically investigate the global transcriptomes of rice which was inoculated with viruliferous SBPH, or inoculated with insect-derived RSV or plant-derived RSV by mechanical inoculation, and generated a useful resource for the immune reaction of rice in face of different kinds of RSV. The changes in the expression of candidate transcripts may provide valuable information for future studies on molecular mechanisms of rice stripe disease.
Project description:The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
Project description:Our analysis provides a comprehensive picture of how P. trichocarpa responds to drought stress at physiological and transcriptome levels which may help to understand molecular mechanisms associated with drought response and could be useful for genetic engineering of woody plants. Drought stress treatment was performed dividing P. trichocarpa plants into the well-watered (WW) group (soil volumetric water content of 40â45 %) and the water-limited group (soil volumetric water content of 10â15 %). Two cDNA libraries constructed separately from the WW and WL groups were subjected to high-throughput Illumina sequencing.
Project description:Photosynthesis underpins the viability of most ecosystems, with C4 plants that exhibit âKranzâ anatomy being the most efficient primary producers. Kranz anatomy is characterized by closely spaced veins that are encircled by two morphologically distinct photosynthetic cell types. Although Kranz anatomy evolved multiple times, the underlying genetic mechanisms remain largely elusive, with only the maize scarecrow gene so far implicated in Kranz patterning. To provide a broader insight into the regulation of Kranz differentiation, we performed a genome-wide comparative analysis of developmental trajectories in Kranz (foliar leaf blade) and non-Kranz (husk leaf sheath) leaves of the C4 plant maize. Using profile classification of gene expression in early leaf primordia, we identified cohorts of genes associated with procambium initiation and vascular patterning. In addition, we used supervised classification criteria inferred from anatomical and developmental analyses of five developmental stages to identify candidate regulators of cell-type specification. Our analysis supports the suggestion that Kranz anatomy is patterned, at least in part, by a SCARECROW/SHORTROOT regulatory network, and suggests likely components of that network. Furthermore, the data imply a role for additional pathways in the development of Kranz leaves.