Ontology highlight
ABSTRACT:
Also investigated in this study is the role of H2A.Z in EMT. H2A.Z is an evolutionary conserved and a metazoan essential histone variant of the H2A class. Mice deficient in H2A.Z die during early development but the reason for this is unknown (Faast et al. 2001). Previously, our laboratory showed that the loss of H2A.Z in Xenpous laevis impaired cell movement required for the formation of the mesoderm and neural crest (Ridgway et al. 2004). Given that mesoderm formation is critically dependent upon EMT, we therefore wondered whether H2A.Z might be a chromatin regulator of EMT. We transfected MDCK cells with a lentiviral vector to express a construct encoding an shRNA targeting canine H2A.Z as we wanted to test the hypothesis that H2A.Z is involved in the maintenance of cellular identity and that its loss might trigger de-differentiation.
In order to investigate changes in histone variant H2A.Z occupancy associated with TGF-beta induced epithelial-to-mesenchymal transition (EMT) we performed H2A.Z ChIP-Seq in untreated and TGFb-treated MDCK cells. The MDCK cell line has been extensively used as a model system for EMT because they convert fully from the epithelial to the mesenchymal state in response to TGF-beta.
Please note that RNA-seq data generated in conjunction to this ChIP-seq data set were also deposited at ArrayExpress under accession number E-MTAB-5628 ( https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5628 ).
INSTRUMENT(S): NextSeq 500
ORGANISM(S): Canis lupus familiaris
SUBMITTER: David Tremethick
PROVIDER: E-MTAB-5637 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress