Project description:The experiment aimed at refining the classification of endometrial cancer by profiling somatic copy number aberrations (SCNAs). SCNAs affecting chromosome 1q32.1 significantly correlated with worse survival and functional validation of a plausible oncogene showed MDM4 as an oncogenic driver in 1q32.1 and a putative therapeutic target for NSMP ECs.
Project description:The impact of different carcinogenic exposures on the specific patterns of somatic mutations in human tumors remains unclear. To clarify this issue, we profiled 209 cholangiocarcinomas (CCAs) from Asia and Europe, including 108 cases caused by liver fluke Opisthorchis viverrini (OV)-infection and 101 cases due to non-OV etiologies. Whole-exome (N = 15) and prevalence screening (N = 194) revealed recurrent somatic mutations in BAP1 and ARID1A, neither of which has been previously reported to be mutated in CCA. Comparisons between intrahepatic OV and non-OV CCAs demonstrated statistically significant different mutation patterns: BAP1 and IDH1/2 were more frequently mutated in non-OV CCAs, while TP53 displayed the reciprocal pattern. Functional studies demonstrated tumor suppressive roles of BAP1 and ARID1A, establishing the role of chromatin modulators in CCA pathogenesis. These findings indicate that different causative etiologies may induce distinct somatic alterations even within the same tumor type. Affymetrix SNP6 arrays were performed according to the manufacturer's directions on DNA extracted from the 15 tumors and the 15 matched normal discovery samples.
Project description:Type II Enteropathy-associated T-cell lymphoma (Type II EATL) is an aggressive intestinal T-cell lymphoma with poor prognosis and has not been molecularly profiled. Through targeted amplicon sequencing, we identified a large portion of Type II EATL samples that harbor mutations in the STAT5B, JAK3 and GNAI2 genes. Genome-wide DNA copy number profiling of Type II EATL tumors and matched normal samples was performed to determine copy-number changes in this disease. Affymetrix SNP6 arrays were performed according to the manufacturer's directions on gDNA extracted from 4 tumors and 4 matched whole blood samples.
Project description:Genomic profiling of myxofibrosarcoma and undifferentiated pleomorphic sarcomas was done to correlate genomic profiles and signatures with outcome and transcriptomic features.
Project description:Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs) including polycythemia vera, essential thrombocythemia and primary myelofibrosis show an inherent tendency for transformation into leukemia (MPN-blast phase), which is hypothesized to be accompanied by acquisition of additional genomic lesions. We, therefore, examined chromosomal abnormalities by high-resolution single-nucleotide polymorphism (SNP) array in 88 MPN patients, as well as 71 cases with MPN-blast phase, and correlated these findings with their clinical parameters. Frequent genomic alterations were found in MPN after leukemic transformation with up to 3-fold more genomic changes per sample compared to samples in chronic phase (p<0.001). We identified commonly altered regions involved in disease progression including established targets (ETV6, TP53 and RUNX1), as well as new candidate genes on 7q, 16q, 19p and 21q. Moreover, trisomy 8 or amplification of 8q24 (MYC) was almost exclusively detected in JAK2V617F(-) cases with MPN-blast phase. Remarkably, copy-number neutral-loss of heterozygosity (CNN-LOH) on either 7q or 9p including homozygous JAK2V617F was related to decreased survival after leukemic transformation (p=0.01 and p=0.016, respectively). Our high density SNP-array analysis of MPN genomes in the chronic compared to leukemic stage identified novel target genes and provided prognostic insights associated with the evolution to leukemia. Keywords: SNP-chip To identify oncogenic lesions in MPD, we performed a genome-wide analysis of primary MPD samples using high-density SNP arrays (Affymetrix GeneChip).
Project description:B cell non-Hodgkin's lymphoma (B-NHL) consists of different pathological entities that are frequently characterized by distinct genetic alterations. However, the knowledge on these genetic lesions in B-NHL is still limited. In order to obtain a more comprehensive view of genetic lesions in B-NHL, we performed genome-wide analysis of copy number (CN) alterations as well as allelic imbalances using Affymetrix SNP arrays with B-NHL cases, including SNP array data were analyzed with CNAG/AsCNAR software, which enabled sensitive detection of CN alterations in allele-specific manner, and thus allelic imbalances, without depending on availability of paired normal controls. Most frequent numerical abnormalities in B-NHL were gains of chromosomes 3 and 18, although gains of chromosome 3 were less prominent in FL. Chromosomal deletions that lead to loss of heterozygosity (LOH) were commonly found in 1p, 6q and 10q. High-grade amplifications and homozygous deletions frequently provide a clue to identify relevant gene targets. In our series, 12 loci of high-grade amplifications and 14 loci of homozygous deletions were identified, and helped to specify the candidate genes. These regions included, FCGR2B amplified in 5 cases of DLBCL, RERE amplified in 2 cases of FL and CDKN2A/CDKN2B deleted in 9 cases of DLBCL. To identify oncogenic lesions in neuroblastoma, we performed a genome-wide analysis of primary tumor samples from 241 lymphoma samples (238 fresh tumors and 3 cell lines) using high-density 50K and/or 250K SNP arrays (Affymetrix GeneChip).
Project description:ALK fusion positive tumor constitutes a unique entitiy in lung adenocarcionmas. We compared the allelokaryotypes of ALK fusion positive and negative tumors with SNP array to get insight into the difference of genomic background of them. Copy number analysis with Affymetrix 250K SNP arrays of 35 ALK fusion positive and 95 ALK fusion negative lung adenocarcinomas was performed with annonymous references.
Project description:This SuperSeries is composed of the following subset Series: GSE12019: Fine-scale mapping of copy-number alterations with massively parallel sequencing GSE13372: High-resolution mapping of copy-number alterations with massively parallel sequencing Refer to individual Series