Project description:Genomewide mapping of D. melanogaster Snail protein binding during embryonic development at 2-4 hrs after egg-laying. Two independent repeats were assayed and preimmune-serum was used as a control. The enriched DNA was hybridized to high density Affymetrix GeneChip Drosophila Tiling 1.0R array
Project description:Genomewide mapping of D. melanogaster Tramtrack69 protein binding at 6-8hrs after egg laying. Two different rabbit antibodies were used to precipitate the Tramtrack69 protein isoform in 3 biological replicates. Additionally a rabbit preimmune-serum was used as a control for every precipitation. The enriched DNA was hybridized to high density Affymetrix GeneChip Drosophila Tiling 1.0R array.
Project description:Genomewide mapping of D. melanogaster Lame duck protein binding at 6-8hrs after egg laying. Two different rabbit antibodies were used to precipitate the Lmd protein isoform in biological replicates. Additionally a rabbit preimmune-serum was used as a control. The enriched DNA was hybridized to high density Affymetrix GeneChip Drosophila Tiling 1.0R array.
Project description:The forkhead transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in cancer. Increased levels of FOXM1 are associated with both poor prognosis and oestrogen receptor (ERalpha) status in primary breast cancer. In this study, we map FOXM1 binding genome wide in both ERalpha-positive (MCF-7) and -negative (MDA-MB-231) breast cancer cells. We identify a common set of FOXM1 binding events at cell cycle-regulating genes, but in addition, in MCF-7 cells we find a high level of concordance with ERalpha-binding regions. FOXM1 binding at these co-binding sites is dependent on ERalpha binding, as depletion of ER protein levels reduced FOXM1 binding. FOXM1 interacts directly with both ERalpha co-activator CARM1 and is required for H3 arginine methylation at the ERalpha complex. Inhibition of FOXM1 activity with the ligand thiostrepton resulted in decreased FOXM1 binding at cca. 1400 sites genome wide and reduced expression of genes correlated with poor prognosis in ERalpha-positive tumour samples. These data demonstrate a novel role for the forkhead protein FOXM1 as an ERalpha cofactor and provide insight into the role of FOXM1 in ERalpha-positive breast cancer. The FOXM1-binding sites were mapped by ChIP-Seq in MCF-7 and MDA-MB-231 cells. Cells were treated either with thiostrepton, a FOXM1 inhibitor, or with DMSO (as control). Four replicates were performed in MCF7 cells and two replicates in MDA-MB-231 cells.
Project description:Here we exploit the essential process of X-chromosome dosage compensation to elucidate basic mechanisms that control the assembly, genome-wide binding, and function of gene regulatory complexes that act over large chromosomal territories. We demonstrate that a subunit of C. elegans MLL/COMPASS, a gene-activation complex, acts within the dosage compensation complex (DCC), a condensin complex, to target the DCC to both X chromosomes of hermaphrodites and thereby reduce chromosome-wide gene expression. The DCC binds to two categories of sites on X: rex sites that recruit the DCC in an autonomous, sequence- dependent manner, and dox sites that reside primarily in promoters of expressed genes and bind the DCC robustly only when attached to X. We find that DCC mutants that abolish rex-site binding do not eliminate dox-site binding, but instead reduce it to the level observed at autosomal binding sites in wild-type animals. Changes in DCC binding to these non-rex sites occur throughout development and correlate with transcriptional activity of adjacent genes. Moreover, autosomal DCC binding is enhanced by rex-site binding in cis in X-autosome fusion chromosomes. Thus, dox and autosomal sites exhibit similar binding properties. Our data support a model for DCC binding in which low-level DCC binding at dox and autosomal sites is dictated by intrinsic properties correlated with high transcriptional activity. Sex-specific DCC recruitment to rex sites then greatly elevates DCC binding to dox sites in cis, which lack intrinsically high DCC affinity on their own. We also show here that the C. elegans DCC achieves dosage compensation through its effects on transcription. The processed data files available here were used in Figure 6 of the paper which references this data. ChIP-chip experiments using antibodies against DPY-27 in wild type mixed embryos and fed L1 larvae.
Project description:Early B cell development is orchestrated by the combined activities of the transcriptional regulators E2A, EBF1, Foxo1 and Ikaros. However, how the genome-wide binding patterns of these regulators are modulated during B-lineage development remains to be determined. Here, we found that in lymphoid progenitors the chromatin remodeler Brg1 specified the B cell fate. In committed pro-B cells Brg1 regulated Igh locus contraction and controlled c-Myc expression to modulate the expression of genes that regulate ribosome biogenesis. In committed pro-B cells Brg1 also suppressed a pre-B lineage-specific pattern of gene expression. Finally, we found that Brg1 acted mechanistically to establish B cell fate and modulate cell growth by facilitating access of lineage-specific transcription factors to poised enhancer repertoires. 8 ATAC-Seq samples from sorted ALP and BLP (duplicates, control and Brg1-deleted), 4 ATAC-Seq samples from cultured pro-B cells (duplicates, control and Brg1-deleted), 2 Ikaros ChIP-seq samples (performed in Rag1-/- pro-B cells and in E2A-/- pre-pro-B cells), 1 Brg1 ChIP-seq sample and accompanying Input sample (both in Rag1-/- pro-B cells), 4 RNA-Seq samples from cultured pro-B cells (duplicates, control and Brg1-deleted), 6 RNA-Seq samples from cultured Rag1-/- pro-B cells (triplicates, control and Brg1-knock down).
Project description:YBX1 is a multifunctional protein involved in the control of transcription and translation. We identified YBX1 as an target of MEK/ERK signaling in colorectal cancer cell lines. We performed a ChIP-chip analysis of HCT116 cells to identify new potential target genes of YBX1. Comparison of input DNA fragments with fragments coprecipitated with YBX1 in HCT116 cells.
Project description:Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here, we describe a new class of modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and we demonstrate that Fibrillarin is the equivalent enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using a H2AQ105me specific antibody, show that this modification is exclusively enriched over the 35S rDNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (Facilitator of Transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 exhibits a defect in histone incorporation and shows increased transcription at rDNA genes. This defect is phenocopied by mutations in FACT that decrease its activity. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.
Project description:This SuperSeries is composed of the following subset Series: GSE20529: Promoter proximal pausing and its regulation by c-Myc in embryonic stem cells: ChIP-chip GSE20530: Promoter proximal pausing and its regulation by c-Myc in embryonic stem cells: ChIP-Seq Refer to individual Series