Illumina microarray analysis of MCF7 and SHSY5Y cells exposed to bilirubin
Ontology highlight
ABSTRACT: To gain an insight into the molecular mechanisms by which bilirubin induces toxicity, we exposed human MCF7 and SHSY5Y cell lines to 50 uM bilirubin (which equates to 6.39 uM of unconjugated bilirubin) for 4 hours. The cells were then washed with PBS and the RNA extracted using Tri-Reagent/1-bromo-3-chloropropane phase separation. The data was extracted using GenomeStudio and normalized/analyzed using ArrayTrack.
Project description:This SuperSeries is composed of the following subset Series:; GSE16656: Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblatoma SH-SY5Y cells: 24h; GSE16766: Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells: 1h; GSE16767: Transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells: 4h Experiment Overall Design: Refer to individual Series
Project description:We developed a novel mouse model of acute bilirubin toxicity. 450mg/kg bilirubin was administered IP to mice, which exhibited transient hearing deficits and ataxia at 4 hours, and recovered by 24 hours. This toxicity is consistent with the human symptoms of bilirubin toxicity. To investigate the molecular mechanisms of bilirubin toxicity we carried out whole genome gene expression analysis on gross brain regions (cortex, cerebellum and brainstem) and specific parts of the auditory pathway (MNTB and CN) at 2 hours, 4 hours and 24 hours post injection. We detected several transcriptional markers of neuroinflammation, and so developed a second set of data for the same brain regions and time points following injection of a well characterized neuroinflammatory agent; LPS (5mg/kg).
Project description:The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces ER stress response as major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.
Project description:The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.
Project description:The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE.
Project description:The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE. Experiment Overall Design: We used high-density oligonucleotide microarrays to analyze the gene expression profile of human neuroblastoma SH-SY5Y cells upon UCB treatment. Three replicates of UCB-treated cells were analyzed. As controls, we used three replicates of the same cells treated with DMSO only (the solvent used for UCB treatment).
Project description:The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces ER stress response as major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE. Experiment Overall Design: We used high density oligonucleotide microarrays to analyze the gene expression profile of human neuroblastoma SH-SY5Y cells upon UCB treatment. Three replicates of UCB-treated cells were analyzed. As controls, we used three replicates of the same cells treated with DMSO only (the solvent used for UCB treatment).
Project description:The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. The effects of UCB treatment to SH-SY5Y neuroblastoma cell line were examined by high-density oligonucleotide microarrays. 230 genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that a large group of UCB-induced genes were components of the ER stress response. Independent experimental validation of molecular events crucial for the ER stress response is presented. The results show that UCB exposure induces the ER stress response as a major intracellular homeostatic response in neuroblastoma cells in vitro. Our finding may provide valuable information for new therapeutic strategies in the treatment of BE. Experiment Overall Design: We used high-density oligonucleotide microarrays to analyze the gene expression profile of human neuroblastoma SH-SY5Y cells upon UCB treatment. Three replicates of UCB-treated cells were analyzed. As controls, we used three replicates of the same cells treated with DMSO only (the solvent used for UCB treatment).