Project description:Malaria-naive male rhesus macaques (Macaca mulatta), approximately four years of age, were inoculated intravenously with salivary gland sporozoites produced and isolated at the Centers for Disease Control and Prevention from multiple Anopheles species (An. dirus, An. gambiae, and An. stephensi) and then profiled for clinical, hematological, parasitological, immunological, functional genomic, lipidomic, proteomic, and metabolomic measurements. The experiment was designed for 100 days, and pre- and post-100 day periods to prepare subjects and administer curative treatments respectively. The anti-malarial drug artemether was subcuratively administered to all subjects at the initial peak of infection, one out of the five macaques received four additional subcurative treatments for subsequent recrudescence peaks. The experimental infection in one subject was ineffective but the macaque was followed-up for the same period of 100 days. The different clinical phases of the infection were clinically determined for each subject. Blood-stage curative doses of artemether were administered to all subjects at the end of the study. Capillary blood samples were collected daily for the measurement of CBCs, reticulocytes, and parasitemias. Capillary blood samples were collected every other day to obtain plasma for metabolomic analysis. Venous blood and bone marrow samples were collected at seven time points for functional genomic, proteomic, lipidomic, and immunological analyses. Within the MaHPIC, this project is known as 'Experiment 03'. This dataset also includes results from MaHPIC Experiment 18 (E18). LC-MS/MS output from E18 were used as a control for analysis. Refer to the E03 and E18 README files for details of these datasets and their production.
Project description:Malaria-naive male rhesus macaques (Macaca mulatta), approximately three years of age, were inoculated intravenously with salivary gland sporozoites produced and isolated at the Centers for Disease Control and Prevention from multiple Anopheles species (An. dirus, An. gambiae, and An. stephensi) and then profiled for clinical, hematological, parasitological, immunological, functional genomic, lipidomic, proteomic, and metabolomic measurements. The experiment was designed for 100 days, and pre- and post-100 day periods to prepare subjects and administer curative treatments respectively. The anti-malarial drug artemether was subcuratively administered selectively to several subjects during the primary parasitemia to suppress clinical complications and to all animals for curative treatment of blood-stage infections to allow detection of relapses. One subject was euthanized during the 100-day experimental period due to clinical complications. The anti-malarial drugs primaquine and chloroquine were administered to all remaining subjects at the end of the study for curative treatment of the liver and blood-stage infections, respectively. Capillary blood samples were collected daily for the measurement of CBCs, reticulocytes, and parasitemias. Capillary blood samples were collected every other day to obtain plasma for metabolomic analysis. Venous blood and bone marrow samples were collected at seven time points for functional genomic, proteomic, lipidomic, and immunological analyses. Within the MaHPIC, this project is known as 'Experiment 04'. This dataset was produced by Lance Wells at UGA. To access other publicly available results from 'E04' and other MaHPIC Experiments, including clinical results (specifics on drugs administered, diet, and veterinary interventions), and other omics, visit http://plasmodb.org/plasmo/mahpic.jsp . This page will be updated as datasets are released to the public. The experimental design and protocols for this study were approved by the Emory University Institutional Animal Care and Use Committee (IACUC). This dataset also includes results from MaHPIC Experiment 18 (E18). LC-MS/MS output from E18 were used as a control for analysis. Refer to the E04 and E18 README files for details of these datasets and their production.
Project description:Malaria-naive male rhesus macaques (Macaca mulatta), approximately four years of age, were inoculated intravenously with salivary gland sporozoites produced and isolated at the Centers for Disease Control and Prevention from multiple Anopheles species (An. dirus, An. gambiae, and An. stephensi) and then profiled for clinical, hematological, parasitological, immunological, functional genomic, lipidomic, proteomic, and metabolomic measurements. The experiment was designed for about 100 days, with pre- and post-100 day periods to prepare subjects and administer curative treatments respectively. During the 100-day period subjects experienced periods of patent and sub-patent infection. The anti-malarial drug artemether was subcuratively administered to subjects after the initial peak of infection, if subjects were not able to self-resolve. Blood-stage curative artemether was administered to all subjects following peak infection, and following a period of relapse infection. All peaks were clinically determined for each subject. The anti-malarial drugs primaquine and chloroquine were administered to all subjects at the end of the study for curative treatment of the liver and blood-stage infections, respectively. Capillary blood samples were collected daily for the measurement of CBCs, reticulocytes, and parasitemias. Capillary blood samples were collected every other day to obtain plasma for metabolomic analysis. Venous blood and bone marrow samples were collected at seven time points for functional genomic, proteomic, lipidomic, and immunological analyses. Within the MaHPIC, this project is known as ‘Experiment 23’. This is an iteration of Experiment 04 with the same parasite-host combination and sampling and treatment adjustments made, and this is the first in a series of experiments that includes subsequent homologous (Experiment 24, P. cynomolgi B strain) and heterologous (Experiment 25, P. cynomolgi strain ceylonensis) challenges of individuals from the Experiment 23 cohort. One subject was not included in subsequent experiments due to persistent behavioral issues that prevented sample collection. This dataset was produced by Lance Wells at University of Georgia. To access other publicly available results from 'E23' and other MaHPIC Experiments, including clinical results (specifics on drugs administered, diet, and veterinary interventions), and other omics, visit http://plasmodb.org/plasmo/mahpic.jsp . This page will be updated as datasets are released to the public. The experimental design and protocols for this study were approved by the Emory University Institutional Animal Care and Use Committee (IACUC). Refer to the E23 README file for further details of this dataset and its production.
Project description:Eco1 is an acetyltransferase subunit of the cohesin complex and acts during DNA replication to establish cohesion between sister chromatids. However, cohesin has additional functions in gene expression, DNA damage repair, and higher-order organization of chromosomes. The eco1 mutant W216G disrupts acetyltansferase activity, and causes genome-wide transcriptional defects which can be suppressed by deletion of FOB1, a gene also involved in DNA replication. This experiment investigates gene expression differences between the eco1-W216G mutant, and mutants in FOB1, and RAD61 a gene involved in inhibition of cohesion establishment but mutation of which is able to suppress temperature sensitivity of the eco1-W216G mutant. Wt and mutant strains of yeast were grown to mid log phase in liquid culture in triplicate and harvested for comparison on Affymetrix microarrays. The following strains were compared: 1) eco1-W216G, 2) eco1-W216G fob1Δ, 3) eco1-W216G rad61Δ, 4) fob1Δ, 5) rad61Δ, and 6) WT.
Project description:Knock out mutants of FNR transcriptional regulator (NGO1579) and NarP response regulator (NGO0752) in N. gonorrhoeae compared to parent strain grown in liquid culture.
Project description:The cohesin protein complex is well known for playing a role in chromosome segregation. However, it has additional less understood roles in transcription, DNA repair, and chromosome condensation. Mutants in two yeast orthologues (Eco1 and Scc2) of human cohesinopathy disease alleles were examined by transcriptional profiling in response to perturbation of the transcriptional program by amino acid starvation. Two cohesin mutants were compared to wt in a time course of amino acid starvation consisting of 4 time points, 3 replicates of each, for a total of 36 samples.
Project description:A study describing the consistency of transcriptional behaviours of B. subtilis in liquid and on solid media at different stages of culture growth
Project description:Gene expression was compared for wild type yeast (BY4741) and yeast lacking Gal11/Med15 and Med3, or from a gal11-myc med3â strain. The gal11-myc allele shows a partial loss of function when combined with med3â. Expression was analyzed for yeast grown in YPD as well as in CSM. We also examined gene expression of the wild type strain BY4742 grown in YPD and include that data here. Gene expression was compared for wild type yeast (BY4741 and BY4742) and yeast lacking Gal11/Med15 and Med3, or from a gal11-myc med3â strain.