RNA-seq of HER2-positive breast cancer BT474 cell line in response to KDM5 ihibition
Ontology highlight
ABSTRACT: Alterations in the histone methylation profiles are observed in various types of cancer and targeting of this epigenetic process has therapeutic potential. Here we provide proof-of-principle that pharmacological targeting of KDM5 histone-demethylases is a new strategy for the personalized treatment of HER2-positive breast cancer. This analysis demonstrates that cells characterized by HER2-positivity are particularly sensitive to KDM5 inhibition. The results are confirmed in an appropriate in vivo model with a close structural analogue (KDM5-inh1A). In selected HER2-positive breast cancer cells, we demonstrate synergistic interactions between KDM5-inh1 and HER2-targeting agents (trastuzumab and lapatinib). In addition, HER2-positive cell lines showing innate/acquired resistance to trastuzumab show sensitivity to KDM5-inh1. The levels of KDM5A/B/C proteins, which are selectively targeted by the agent, have no significant association with KDM5-inh1 responsiveness across our panel of breast cancer cell lines, suggesting the existence of other determinants of sensitivity. Using RNA-sequencing data of the breast cancer cell lines, we generate a gene-expression model, consisting of fifteen genes, which is a robust predictor of KDM5-inh1 sensitivity. In a test set of breast cancers, this model correctly predicts sensitivity to the compound in a large fraction of HER2+ tumors. In conclusion, KDM5 inhibition has potential in the treatment of HER2+ breast cancer and our gene-expression model can be developed into a diagnostic tool to select patients who may benefit from treatments based on KDM5-inhibitors.
INSTRUMENT(S): NextSeq 500
ORGANISM(S): Homo sapiens
SUBMITTER: MARCO BOLIS
PROVIDER: E-MTAB-7433 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA