Environmental heat stress in Greenland blue mussels (Mytilus edulis)
Ontology highlight
ABSTRACT: Background biology: Global warming has accelerated in recent decades, with the Arctic warming 2–3 times faster than the global average. As a result boreal species are expanding into the Arctic, at a pace reflecting environmental warming. Nevertheless, the poleward expansion of boreal marine species is restricted by their ability to tolerate low water temperatures, and in the case of intertidal species, sub-zero air temperatures during winter. In Greenland, however, the number of days with extreme sub-zero air temperatures has decreased by more than 50% since the 1950’s, suggesting that the low air temperature constraint is weakening. Although boreal intertidal species could potentially benefit from this warmer climate to establish populations in the Arctic, recent work has shown that local intertidal summer air temperatures in Greenland can exceed 36°C. This temperature is above the thermoregulatory capacity of many boreal intertidal species, including the highly abundant blue mussel Mytilus edulis. Therefore will further colonisation of M. edulis in Greenland be inhibited by the increasingly warm summer temperatures. Aim of experiment: Intertidal animals (Greenland blue mussel M. edulis) were sampled in situ on the first warm days of the year from the inner (warmer) and outer (cooler) regions of the Godthåbsfjorden around Nuuk (64°N) to examine the fjord temperature gradient effect. In addition, subtidal M. edulis were also collected and subjected to two acute temperature shocks of 22 and 32°C, which represented common and extreme summer air temperatures for intertidal habitats near Nuuk.
INSTRUMENT(S): Illumina HiSeq 2500
ORGANISM(S): Mytilus edulis
SUBMITTER: Melody Clark
PROVIDER: E-MTAB-9786 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA