Project description:Human dermal microvascular endothelial cells (HDMVECs) were irradiated with 2 Gy or non-irradiated. Two methods of RNA isolation were used to comparatively analyze the miRNA status after radiation treatment.
Project description:Target of this study is to identify genes which are responsible for lymph node metastasis or primary pancreatic tumors. 1ASNEO is a pancreas tumor cell line, derived from a tumor which does not (hardly) metastasize. 1ASNEO cells are implanted into rat to induce tumor growth in transplanted rat. Cells from the induced primary tumor as well as from lymph node metastases are excised cultivated and profiled. Aliquots of these tumor cell lines are implanted in a subsequent rounds into other animals, reisolated and also profiled
Project description:Study of genes expressed early during differentiation of L.donovani promastigotes into amastiogotes. In this experiment, gene expression changes were studied between and promastigotes and an intermediate stage of differentiation PA24(promastigotes after shifting to amastigote culture conditions for 24 hrs. PA24 RNA sample was labeled with Cy5 and pro sample was treated with Cy3.
Project description:A primary human cell line, UACC-SARC1, was derived from a resection for a neoadjuvant chemotherapy resistant radiation induced spindle cell sarcoma. The sarcoma cell line was derived from a breast cancer patient who was treated with breast conserving surgery and radiation therapy. This radiation induced sarcoma is a malignant fibrous histiocytoma. Comparative genomic hybridization was performed on the source material and on the established cell line 20 of the cell line
Project description:The secretion of metabolites by plant roots is a key determinant of microbial growth and colonisation. We have used Pisum sativum and its natural symbiont Rhizobium leguminosarum (it can form N2 fixing nodules on pea roots) to study the natural metabolites secreted by roots. To do this root secretion was harvested from pea plants grown under sterile conditions. This root exudate was then concentrated and used as a sole carbon and nitrogen source for growth of the bacteria in the laboratory. These bacteria were harvested in mid-exponential growth and RNA extracted for microarray analysis. As control cultures the bacteria were grown on 30 mM pyruvate as a carbon source and 10 mM ammonium chloride as a nitrogen source and RNA extracted. Two colour microarrays were performed using root exudate cultures versus pyruvate ammonia grown cultures. This was done in biological triplicate.
Project description:Recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) has a poor prognosis with less than 1-year median survival. Platinum-based chemotherapy (cisplatin or carboplatin) remains the first-line treatment for HNSCC. The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. A small population of CSCs exists within HNSCC that are relatively resistant to chemotherapy and clinically predicted to mediate tumor recurrence. These CSCs are identified by high cell-surface expression of CD44 and high intracellular activity of aldehyde dehydrogenase (ALDH) and termed ALDHhighCD44high. We investigated the molecular pathways active in ALDHhighCD44high cells, which remain poorly studied. Additionally, we performed a molecular examination of cisplatin-resistant ALDHhighCD44high cells, which has not been reported. Two HNSCC cell lines, UM-SCC-1 and UM-SCC-22b, were utilized in this study. For microarray analysis, UM-SCC-22b cells were treated for 5 days in vitro with 2uM cisplatin and analyzed by flow cytometry, sorted and submitted for microarray analysis of ALDHhighCD44high and ALDHlowCD44low cells from untreated and cisplatin treated cells. Four separate flow cytometry experiments were performed using Affymetrix Human Gene ST 2.1 microarrays. Microarray data was analyzed using R/Bioconductor. Files were preprocessed by Robust Multiarray Average (RMA) with background substraction, quantile normalization, and median polish (oligo package). Data was fitted with robust probe level linear models to all the probesets (oligo package). Experiment and processing batch differences were accounted for using 'ComBat' within the SVA package. Differentially expressed genes were identified using univariate comparisons after fitting data to a linear model (limma package). Initial statistics were determined using an empirical Bayesian model. Multiple testing comparisons were adjusted using Benjamini and Hochberg (aka FDR). Probes with an adjusted p-value <0.05 were considered statistically significant. Unsupervised hierarchical clustering with complete linkage and Euclidean distance was performed on only statistically significant probes. In four separate experiments, the head and neck squamous cell carcinoma cell line UM-SCC-22b were cultured for 5 days with or without 2uM (micromolar) cisplatin in 6-well plates. Media was replaced every other day. Control and cisplatin treated cells were trypsinized, procesed, and stained for CD44 cell-surface expression and intracellular aldehyde dehydrogenase (ALDH) activity to identify cancer stem cells (ALDH+CD44+). CSCs and non-CSCs (ALDH-CD44-) were collected by flow cytometry from both groups. Total RNA was collected from each fraction (ALDH+CD44+, ALDH-CD44-), treatment (control, cisplatin), and experiment (#1-4). A total of 16 samples were analyzed. One set of 4 (experiment #4) were analyzed on a Human Gene ST 2.1 strip and the rest on a Human Gene ST 2.1 plate. Differential gene expression was determined with R/Bioconductor with Robust Multiarray Average (RMA) and fitting the data to linear models (limma). Experimental and processing batch effects were accounted for using ComBat. Four sets of univariate comparisons were made: 1) Cisplatin ALDH+CD44+ vs Control ALDH+CD44+; 2) Control ALDH+CD44+ vs Control ALDH-CD44-; 3) Cisplatin ALDH+CD44+ vs Cisplatin ALDH-CD44-; 4) Cisplatin ALDH-CD44- vs Control ALDH-CD44-. Multiple testing comparisons were adjusted using Benjamini and Hochberg (aka FDR). Probes with an adjusted p-value <0.05 were considered statistically significant.
Project description:The effect of high fat diet feeding on adipose tissue gene transcription regulation was investigated in C57Bl/6J mice using Affymetrix gene expression arrays. Expression profiling was determined in 5 months old male mice showing heterogeneous metabolic, hormonal and behavioral adaptation to high fat diet (40% fat) feeding for 15 weeks. Control mice were fed a standard carbohydrate chow. Six animals per group were used.