Unknown

Dataset Information

0

Combining Machine Learning with Metabolomic and Embryologic Data Improves Embryo Implantation Prediction.


ABSTRACT: This study investigated whether combining metabolomic and embryologic data with machine learning (ML) models improve the prediction of embryo implantation potential. In this prospective cohort study, infertile couples (n=56) undergoing day-5 single blastocyst transfer between February 2019 and August 2021 were included. After day-5 single blastocyst transfer, spent culture medium (SCM) was subjected to metabolite analysis using nuclear magnetic resonance (NMR) spectroscopy. Derived metabolite levels and embryologic parameters between successfully implanted and failed groups were incorporated into ML models to explore their predictive potential regarding embryo implantation. The SCM of blastocysts that resulted in successful embryo implantation had significantly lower pyruvate (p<0.05) and threonine (p<0.05) levels compared to medium control but not compared to SCM related to embryos that failed to implant. Notably, the prediction accuracy increased when classical ML algorithms were combined with metabolomic and embryologic data. Specifically, the custom artificial neural network (ANN) model with regularized parameters for metabolomic data provided 100% accuracy, indicating the efficiency in predicting implantation potential. Hence, combining ML models (specifically, custom ANN) with metabolomic and embryologic data improves the prediction of embryo implantation potential. The approach could potentially be used to derive clinical benefits for patients in real-time.

SUBMITTER: Cheredath A 

PROVIDER: S-EPMC10014658 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combining Machine Learning with Metabolomic and Embryologic Data Improves Embryo Implantation Prediction.

Cheredath Aswathi A   Uppangala Shubhashree S   C S Asha A   Jijo Ameya A   R Vani Lakshmi VL   Kumar Pratap P   Joseph David D   G A Nagana Gowda NG   Kalthur Guruprasad G   Adiga Satish Kumar SK  

Reproductive sciences (Thousand Oaks, Calif.) 20220912 3


This study investigated whether combining metabolomic and embryologic data with machine learning (ML) models improve the prediction of embryo implantation potential. In this prospective cohort study, infertile couples (n=56) undergoing day-5 single blastocyst transfer between February 2019 and August 2021 were included. After day-5 single blastocyst transfer, spent culture medium (SCM) was subjected to metabolite analysis using nuclear magnetic resonance (NMR) spectroscopy. Derived metabolite le  ...[more]

Similar Datasets

| S-EPMC11500093 | biostudies-literature
| S-EPMC8097973 | biostudies-literature
| S-EPMC9995617 | biostudies-literature
2013-01-01 | E-GEOD-29210 | biostudies-arrayexpress
| S-EPMC8544431 | biostudies-literature
| S-EPMC11527386 | biostudies-literature
| S-EPMC7237664 | biostudies-literature
| S-EPMC2990459 | biostudies-literature
| S-EPMC7839691 | biostudies-literature
| S-EPMC10101485 | biostudies-literature