Ontology highlight
ABSTRACT: Methods
The Monte Carlo simulation reproduces the irradiation geometry of a blood sample of 7 ml mixed with 1 ml of a water equivalent radioactive solution in an 8 ml vial. The simulation was performed for ten different radionuclides: 18F, 68Ga, 90Y, 99mTc, 123I, 124I, 131I, 177Lu, 223Ra, and 225Ac. Two sets of simulations for each radionuclide were performed with 1x109 histories. The first set was simulated with a mass density of 1.0525 g/cm3 of the blood plus water mixture. The second set of simulations was performed with a mass density of 1 g/cm3 for comparison with previous studies.Results
The values of dBlood for ten radionuclides were calculated. The values range from 10.23 mGy∙ml∙MBq-1 for 99mTc to 15632.02 mGy∙ml∙MBq-1 for 225Ac. The maximum relative change compared to previous studies was 13.0% for 124I.Conclusion
This study provides a comprehensive set of absorbed dose coefficients for 1 ml for 1 h internal ex vivo irradiation of peripheral blood in a special vial geometry and radionuclides typically used in Nuclear Medicine. Furthermore, the method proposed by this work can be easily adapted to a variety of internal irradiation conditions and serve as a reference for future studies.
SUBMITTER: Salas-Ramirez M
PROVIDER: S-EPMC10082371 | biostudies-literature | 2023 Feb
REPOSITORIES: biostudies-literature
Salas-Ramirez Maikol M Lassmann Michael M Eberlein Uta U
Zeitschrift fur medizinische Physik 20220524 1
To establish a dose-response relationship between radiation-induced DNA damage and the corresponding absorbed doses in blood irradiated with radionuclides in solution under ex vivo conditions, the absorbed dose coefficient for 1 ml for 1 h internal ex vivo irradiation of peripheral blood (d<sub>Blood</sub>) must be determined. d<sub>Blood</sub> is specific for each radionuclide, and it depends on the irradiation geometry. Therefore, the aim of this study is to use the Monte Carlo radiation trans ...[more]