Unknown

Dataset Information

0

Non-Covalent Integration of a [FeFe]-Hydrogenase Mimic to Multiwalled Carbon Nanotubes for Electrocatalytic Hydrogen Evolution.


ABSTRACT: Surface integration of molecular catalysts inspired from the active sites of hydrogenase enzymes represents a promising route towards developing noble metal-free and sustainable technologies for H2 production. Efficient and stable catalyst anchoring is a key aspect to enable this approach. Herein, we report the preparation and electrochemical characterization of an original diironhexacarbonyl complex including two pyrene groups per catalytic unit in order to allow for its smooth integration, through π-interactions, onto multiwalled carbon nanotube-based electrodes. In this configuration, the grafted catalyst could reach turnover numbers for H2 production (TONH2 ) of up to 4±2×103 within 20 h of bulk electrolysis, operating at neutral pH. Post operando analysis of catalyst functionalized electrodes revealed the degradation of the catalytic unit occurred via loss of the iron carbonyl units, while the anchoring groups and most part of the ligand remained attached onto multiwalled carbon nanotubes.

SUBMITTER: Zamader A 

PROVIDER: S-EPMC10092503 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Non-Covalent Integration of a [FeFe]-Hydrogenase Mimic to Multiwalled Carbon Nanotubes for Electrocatalytic Hydrogen Evolution.

Zamader Afridi A   Reuillard Bertrand B   Pécaut Jacques J   Billon Laurent L   Bousquet Antoine A   Berggren Gustav G   Artero Vincent V  

Chemistry (Weinheim an der Bergstrasse, Germany) 20221019 69


Surface integration of molecular catalysts inspired from the active sites of hydrogenase enzymes represents a promising route towards developing noble metal-free and sustainable technologies for H<sub>2</sub> production. Efficient and stable catalyst anchoring is a key aspect to enable this approach. Herein, we report the preparation and electrochemical characterization of an original diironhexacarbonyl complex including two pyrene groups per catalytic unit in order to allow for its smooth integ  ...[more]

Similar Datasets

| S-EPMC9313588 | biostudies-literature
| S-EPMC6282596 | biostudies-literature
| S-EPMC10521030 | biostudies-literature
| S-EPMC4248817 | biostudies-literature
| S-EPMC10120591 | biostudies-literature
| S-EPMC4945928 | biostudies-literature
| S-EPMC9954209 | biostudies-literature
| S-EPMC3113459 | biostudies-literature
2015-11-27 | GSE75429 | GEO
| S-EPMC5748273 | biostudies-literature