Project description:The United Nations' Sustainable Development Goal (SDG) 3.9 calls for a substantial reduction in deaths attributable to PM2.5 pollution (DAPP). However, DAPP projections vary greatly and the likelihood of meeting SDG3.9 depends on complex interactions among environmental, socio-economic, and healthcare parameters. We project potential future trends in global DAPP considering the joint effects of each driver (PM2.5 concentration, death rate of diseases, population size, and age structure) and assess the likelihood of achieving SDG3.9 under the Shared Socioeconomic Pathways (SSPs) as quantified by the Scenario Model Intercomparison Project (ScenarioMIP) framework with simulated PM2.5 concentrations from 11 models. We find that a substantial reduction in DAPP would not be achieved under all but the most optimistic scenario settings. Even the development aligned with the Sustainability scenario (SSP1-2.6), in which DAPP was reduced by 19%, still falls just short of achieving a substantial (≥20%) reduction by 2030. Meeting SDG3.9 calls for additional efforts in air pollution control and healthcare to more aggressively reduce DAPP.
Project description:Long-term air pollution exposure, notably fine particulate matter, is a global contributor to morbidity and mortality and a known risk factor for coronary artery disease (CAD) and myocardial infarctions (MI). Knowledge of impacts related to source-apportioned PM2.5 is limited. New modeling methods allow researchers to estimate source-specific long-term impacts on the prevalence of CAD and MI. The Catheterization Genetics (CATHGEN) cohort consists of patients who underwent a cardiac catheterization at Duke University Medical Center between 2002 and 2010. Severity of coronary blockage was determined by coronary angiography and converted into a binary indicator of clinical CAD. History of MI was extracted from medical records. Annual averages of source specific PM2.5 were estimated using an improved gas-constrained source apportionment model for North Carolina from 2002 to 2010. We tested six sources of PM2.5 mass for associations with CAD and MI using mixed effects multivariable logistic regression with a random intercept for county and multiple adjustments. PM2.5 fractions of ammonium bisulfate and ammonium nitrate were associated with increased prevalence of CAD (odds ratio [OR] 1.20; 95% CI = 1.11, 1.22 and OR 1.18; 95% CI = 1.05, 1.32, respectively). PM2.5 from ammonium bisulfate and ammonium nitrate were also associated with increased prevalence of MI (OR 1.20; 95% CI = 1.10, 1.29 and OR 1.35; 95% CI = 1.20, 1.53, respectively). Greater PM2.5 concentrations of ammonium bisulfate and ammonium nitrate are associated with greater MI and CAD prevalence. The association with bisulfate suggests aerosol acidity may play a role. Our findings suggest analyses of source specific PM2.5 mass can reveal novel associations.
Project description:Frailty is common among older people and results in adverse health outcomes. We investigated whether exposure to PM2.5 is associated with frailty. This cross-sectional study involved 20,606 community-dwelling participants aged ≥ 65 years, residing in New Taipei City, Taiwan. Analytic data included phenotypic frailty, disease burden by Charlson Comorbidity Index (CCI), urban or rural residence, and household income. PM2.5 exposure was calculated from air quality monitoring records, with low exposure defined as the lowest quartile of the study population. 1,080 frail participants (5.2%) were older, predominantly female, had more comorbidities, lived rurally, and had low PM2.5 exposure (all p < 0.001). In multinomial logistic regression analyses, the likelihood of high PM2.5 exposure was higher in prefrail (OR 1.4, 95% CI 1.3-1.5) and frail adults (OR 1.5, 95% CI 1.2-1.9) than in robust individuals, with stronger associations in those who were male (frail: OR 2.1, 95% CI 1.5-3.1; prefrail: OR 2.2, 95% CI 1.9-2.6), ≥ 75 years old (frail: OR 1.8, 95% CI 1.3-2.4; prefrail: OR 1.5, 95% CI 1.3-1.8), non-smokers (frail: OR 1.6, 95% CI 1.3-2.0; prefrail: OR 1.4, 95% CI 1.2-1.5), had CCI ≥ 2 (frail: OR 5.1, 95% CI 2.1-12.6; prefrail: OR 2.1, 95% CI 1.2-3.8), and with low household income (frail: OR 4.0, 95% CI 2.8-5.8; prefrail: OR 2.7, 95% CI 2.2-3.3). This study revealed a significant association between PM2.5 exposure and frailty, with a stronger effect in vulnerable groups.
Project description:China's efforts to curb air pollution have drastically reduced its concentrations of fine particulate matter (PM2.5) from 2013 to 2018 nationwide. However, few studies examined the most recent changes in PM2.5 concentrations and questioned if the previous PM2.5 declining trend was sustained or not. This study took a deep dive into the PM2.5 trend for 136 northern cities of China from 2015 to early 2020 before the coronavirus disease 2019 (the COVID-19 hereafter) crisis, using ground-based PM2.5 data notably adjusted for a key measurement method change. We find that mean PM2.5 concentrations in northern China increased by 5.16 µg/m3 in 2019, offsetting 80% of the large reduction achieved in 2018. The rebound was more significant during the heating seasons (HS; Nov to next Mar) over the 2 years: 10.49 µg/m3 from the 2017 HS to the 2019 HS. A multiple linear regression analysis further revealed that anthropogenic factors contributed to around 50% of the PM2.5 rebound in northern cities of China. Such a significant role of anthropogenic factors in driving the rebound was tightly linked to deep cuts in PM2.5 concentrations in the previous year, systemic adjustment of policy targets and mitigation measures by the government, and the rising marginal cost of these measures. These findings suggest the need to chart a more sustainable path for future PM2.5 emission reductions, with an emphasis on key regions during key pollution periods.
Project description:Epidemiologic observations suggest that exposure to ambient fine particulate matter (PM2.5) is associated with increased risk of chronic kidney disease (CKD) and diabetes, a causal driver of CKD. We evaluated whether diabetes mediates the association between PM2.5 and CKD. A cohort of 2,444,157 United States veterans were followed over a median 8.5 years. Environmental Protection Agency data provided PM2.5 exposure levels. Regression models assessed associations and their proportion mediated. A 10 µg/m3 increase in PM2.5 was associated with increased odds of having a diabetes diagnosis (odds ratio: 1.18, 95% CI: 1.06-1.32), use of diabetes medication (1.22, 1.07-1.39), and increased risk of incident eGFR <60 ml/min/1.73 m2 (hazard ratio:1.20, 95% CI: 1.13-1.29), incident CKD (1.28, 1.18-1.39), ≥30% decline in eGFR (1.23, 1.15-1.33), and end-stage renal disease (ESRD) or ≥50% decline in eGFR (1.17, 1.05-1.30). Diabetes mediated 4.7% (4.3-5.7%) of the association of PM2.5 with incident eGFR <60 ml/min/1.73 m2, 4.8% (4.2-5.8%) with incident CKD, 5.8% (5.0-7.0%) with ≥30% decline in eGFR, and 17.0% (13.1-20.4%) with ESRD or ≥50% decline in eGFR. Diabetes minimally mediated the association between PM2.5 and kidney outcomes. The findings will help inform more accurate estimates of the burden of diabetes and burden of kidney disease attributable to PM2.5 pollution.
Project description:PurposeTo conduct the first epidemiologic study prospectively examining the association between particulate matter air pollution < 2.5 µm in diameter (PM2.5) exposure and hepatocellular carcinoma (HCC) risk in the U.S.MethodsSurveillance, Epidemiology, and End Results (SEER) provided information on HCC cases diagnosed between 2000 and 2014 from 16 population-based cancer registries across the U.S. Ambient PM2.5 exposure was estimated by linking the SEER county with a spatial PM2.5 model using a geographic information system. Poisson regression with robust variance estimation was used to calculate incidence rate ratios and 95% confidence intervals (CIs) for the association between ambient PM2.5 exposure per 10 µg/m3 increase and HCC risk adjusting for individual-level age at diagnosis, sex, race, year of diagnosis, SEER registry, and county-level information on health conditions, lifestyle, demographic, socioeconomic, and environmental factors.ResultsHigher levels of ambient PM2.5 exposure were associated with a statistically significant increased risk for HCC (n = 56,245 cases; adjusted IRR per 10 µg/m3 increase = 1.26, 95% CI 1.08, 1.47; p < 0.01).ConclusionsIf confirmed in studies with individual-level PM2.5 exposure and risk factor information, these results suggest that ambient PM2.5 exposure may be a risk factor for HCC in the U.S.
Project description:BackgroundPrenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes.MethodsThis prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses.ResultsExposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 μg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 μg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively.ConclusionExposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.
Project description:Particulate matters with a diameter of less than 10 µm (PM10) or less than 2.5 µm (PM2.5) are major air pollutants. Their relationship to psychiatric disorders has not yet been extensively studied. We aimed to explore the relationship between PM10 and PM2.5 air pollution peaks and the daily number of emergency visits for psychotic and mood disorders. Clinical data were collected from the Emergency Department of a Paris suburb (Créteil, France) from 2008 to 2018. Air pollution data were measured by the Paris region air quality network (Airparif) and collected from public databases. Pollution peak periods were defined as days for which the daily mean level of PM was above nationally predefined warning thresholds (20 µg/m3 for PM2.5, and 50 µg/m3 for PM10), and the 6 following days. Multivariable analyses compared the number of daily visits for psychotic and mood (unipolar and bipolar) disorders according to pollution peak, using negative binomial regression. After adjustment on meteorological variables (temperature, humidity, amount of sunshine in minutes), the daily number of emergency visits for psychotic disorders was significantly higher during PM2.5 and PM10 air pollution peak periods; while the number of visits for unipolar depressive disorders was higher only during PM10 peak periods (β = 0.059, p-value = 0.034). There were no significant differences between peak and non-peak periods for bipolar disorders. Differences in the effects of PM air pollution on psychotic and mood disorders should be analyzed in further studies.
Project description:To reduce the high burden of disease caused by air pollution, the World Health Organization (WHO) released new Air Quality Guidelines (AQG) on September 22, 2021. In this study, the daily fine particulate matter (PM2.5) and surface ozone (O3) data of 618 cities around the world is collected from 2019 to 2022. Based on the new AQG, the number of attainment days for daily average concentrations of PM2.5 (≤ 15 µg m-3) and O3 (≤ 100 µg m-3) is approximately 10% and 90%, respectively. China and India exhibit a decreasing trend in the number of highly polluted days (> 75 µg m-3) for PM. Every year over 68% and 27% of cities in the world are exposed to harmful PM2.5 (> 35 µg m-3) and O3 (> 100 µg m-3) pollution, respectively. Combined with the United Nations Sustainable Development Goals (SDGs), it is found that more than 35% of the world's cities face PM2.5-O3 compound pollution. Furthermore, the exposure risks in these cities (China, India, etc.) are mainly categorized as "High Risk", "Risk", and "Stabilization". In contrast, economically developed cities are mainly categorized as "High Safety", "Safety", and "Deep Stabilization." These findings indicate that global implementation of the WHO's new AQG will minimize the inequitable exposure risk from air pollution.
Project description:BackgroundIncreasing evidence regards the role of ambient particles on morbidity and mortality caused by cardiovascular diseases (CVDs). However, there was no evidence about the association between ambient particles and CVD-associated disability. This study used large national representative data to investigate the relationship between long-term exposure to an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) and CVD-associated disability among Chinese adults aged 45 years old and above and estimated the burden of CVD-associated disability attributed to PM2.5.MethodsUsing data from the Second National Sample Survey on Disability, this study used a combination of self-reports or family members' reports and on-site medical diagnosis by experienced specialists to ascertain CVD-associated disability in 852,742 adults aged 45 years old and above. Logistic regression models and spline regression models were used to examine the association between PM2.5 long-term exposure and CVD-associated disability, and the population attributable risk was calculated to assess the burden of CVD-associated disability contributed to PM2.5.ResultsEvery increase of 10 μg/m3 in PM2.5 was associated with an 8% (OR = 1.08, 95% CI: 1.05, 1.10) increase the odds of CVD-associated disability. Stratified analyses by demographic factors suggested that this association was robust. There were 1.05 (0.74,1.35) million -3.53 (3.29,3.75) million CVD-associated disabilities attributed to high PM2.5 concentration exposure (≥35 µg/m3) among middle-aged and older adults in 2006. A reduction in PM2.5 concentrations to 35 µg/m3 corresponded to a decrease of 13.59% (9.55%, 17.46%)-23.98% (17.17%, 30.25%) in CVD-associated disability by age group, respectively, and this magnitude increased in areas with a high prevalence of CVD-related disability.ConclusionsThis study suggests that reducing PM2.5 concentrations may contribute to preventing CVD-associated disability and decreasing air pollution-related medical expenditures and rehabilitation fees.