Unknown

Dataset Information

0

Ultra-low threshold continuous-wave quantum dot mini-BIC lasers.


ABSTRACT: Highly compact lasers with ultra-low threshold and single-mode continuous wave (CW) operation have been a long sought-after component for photonic integrated circuits (PICs). Photonic bound states in the continuum (BICs), due to their excellent ability of trapping light and enhancing light-matter interaction, have been investigated in lasing configurations combining various BIC cavities and optical gain materials. However, the realization of BIC laser with a highly compact size and an ultra-low CW threshold has remained elusive. We demonstrate room temperature CW BIC lasers in the 1310 nm O-band wavelength range, by fabricating a miniaturized BIC cavity in an InAs/GaAs epitaxial quantum dot (QD) gain membrane. By enabling effective trapping of both light and carriers in all three dimensions, ultra-low threshold of 12 μW (0.052 kW cm-2) is achieved at room temperature. Single-mode lasing is also realized in cavities as small as only 5 × 5 unit cells (~2.5 × 2.5 μm2 cavity size) with a mode volume of 1.16(λ/n)3. The maximum operation temperature reaches 70 °C with a characteristic temperature of T0 ~93.9 K. With its advantages in terms of a small footprint, ultra-low power consumption, and adaptability for integration, the mini-BIC lasers offer a perspective light source for future PICs aimed at high-capacity optical communications, sensing and quantum information.

SUBMITTER: Zhong H 

PROVIDER: S-EPMC10130040 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultra-low threshold continuous-wave quantum dot mini-BIC lasers.

Zhong Hancheng H   Yu Ying Y   Zheng Ziyang Z   Ding Zhengqing Z   Zhao Xuebo X   Yang Jiawei J   Wei Yuming Y   Chen Yingxin Y   Yu Siyuan S  

Light, science & applications 20230425 1


Highly compact lasers with ultra-low threshold and single-mode continuous wave (CW) operation have been a long sought-after component for photonic integrated circuits (PICs). Photonic bound states in the continuum (BICs), due to their excellent ability of trapping light and enhancing light-matter interaction, have been investigated in lasing configurations combining various BIC cavities and optical gain materials. However, the realization of BIC laser with a highly compact size and an ultra-low  ...[more]

Similar Datasets

| S-EPMC7033092 | biostudies-literature
| S-EPMC11251162 | biostudies-literature
| S-EPMC6449346 | biostudies-literature
| S-EPMC8529423 | biostudies-literature
| S-EPMC5817622 | biostudies-literature
| S-EPMC5409494 | biostudies-literature
| S-EPMC9095672 | biostudies-literature
| S-EPMC11923508 | biostudies-literature
| S-EPMC4806356 | biostudies-literature
| S-EPMC9256698 | biostudies-literature