Unknown

Dataset Information

0

Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients.


ABSTRACT:

Background

Neoadjuvant chemotherapy (NAC) has become the standard therapeutic option for early high-risk and locally advanced breast cancer. However, response rates to NAC vary between patients, causing delays in treatment and affecting the prognosis for patients who do not sensitive to NAC.

Materials and methods

In total, 211 breast cancer patients who completed NAC (training set: 155, validation set: 56) were retrospectively enrolled. we developed a deep learning radiopathomics model(DLRPM) by Support Vector Machine (SVM) method based on clinicopathological features, radiomics features, and pathomics features. Furthermore, we comprehensively validated the DLRPM and compared it with three single-scale signatures.

Results

DLRPM had favourable performance for the prediction of pathological complete response (pCR) in the training set (AUC 0.933[95% CI 0.895-0.971]), and in the validation set (AUC 0.927 [95% CI 0.858-0.996]). In the validation set, DLRPM also significantly outperformed the radiomics signature (AUC 0.821[0.700-0.942]), pathomics signature (AUC 0.766[0.629-0.903]), and deep learning pathomics signature (AUC 0.804[0.683-0.925]) (all p < 0.05). The calibration curves and decision curve analysis also indicated the clinical effectiveness of the DLRPM.

Conclusions

DLRPM can help clinicians accurately predict the efficacy of NAC before treatment, highlighting the potential of artificial intelligence to improve the personalized treatment of breast cancer patients.

SUBMITTER: Zhang J 

PROVIDER: S-EPMC10176880 | biostudies-literature | 2023 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients.

Zhang Jieqiu J   Wu Qi Q   Yin Wei W   Yang Lu L   Xiao Bo B   Wang Jianmei J   Yao Xiaopeng X  

BMC cancer 20230512 1


<h4>Background</h4>Neoadjuvant chemotherapy (NAC) has become the standard therapeutic option for early high-risk and locally advanced breast cancer. However, response rates to NAC vary between patients, causing delays in treatment and affecting the prognosis for patients who do not sensitive to NAC.<h4>Materials and methods</h4>In total, 211 breast cancer patients who completed NAC (training set: 155, validation set: 56) were retrospectively enrolled. we developed a deep learning radiopathomics  ...[more]

Similar Datasets

| S-EPMC11377584 | biostudies-literature
| S-EPMC10417050 | biostudies-literature
| S-EPMC7475504 | biostudies-literature
| S-EPMC11520773 | biostudies-literature
| S-EPMC7254668 | biostudies-literature
2017-11-17 | GSE106977 | GEO
| S-EPMC8167133 | biostudies-literature
| S-EPMC5995183 | biostudies-literature
| S-EPMC9218360 | biostudies-literature
| S-EPMC8960929 | biostudies-literature