Unknown

Dataset Information

0

Comparison of bone microstructure and strength in the distal radius and tibia between the different types of primary hypertrophic osteoarthropathy: an HR-pQCT study.


ABSTRACT: Primary hypertrophic osteoarthropathy (PHO) is a hereditary bone disease that is grouped into PHO autosomal recessive 1 (PHOAR1) and PHO autosomal recessive 2 (PHOAR2) due to different causative genes. Data comparing bone microstructure between the two subtypes are scarce. This is the first study to find that PHOAR1 patients had inferior bone microstructure compared with PHOAR2 patients.

Purpose

The primary goal of this study was to assess bone microarchitecture and strength in PHOAR1 and PHOAR2 patients and to compare them with age- and sex-matched healthy controls (HCs). The secondary goal was to assess the differences between PHOAR1 and PHOAR2 patients.

Methods

Twenty-seven male Chinese PHO patients (PHOAR1 = 7; PHOAR2 = 20) were recruited from Peking Union Medical College Hospital. The areal bone mineral density (aBMD) was assessed by dual-energy X-ray absorptiometry (DXA). Peripheral bone microarchitecture at the distal radius and tibia were evaluated by high-resolution peripheral quantitative computed tomography (HR-pQCT). Biochemical markers of PGE2, bone turnover, and Dickkopf-1 (DKK1) were investigated.

Results

Compared with HCs, PHOAR1 and PHOAR2 patients had distinctively larger bone geometry, substantially lower vBMD at the radius and tibia, and compromised cortical microstructure at the radius. For trabecular bone, PHOAR1 and PHOAR2 patients showed different changes at the tibia. PHOAR1 patients had significant deficits in the trabecular compartment, resulting in lower estimated bone strength. Conversely, PHOAR2 patients showed a higher trabecular number, narrower trabecular separation, and lower trabecular network inhomogeneity than HCs, translating into preserved or slightly high estimated bone strength.

Conclusion

PHOAR1 patients had inferior bone microstructure and strength compared with PHOAR2 patients and HCs. Additionally, this study was the first to find differences in the bone microstructure between PHOAR1 and PHOAR2 patients.

SUBMITTER: Pang Q 

PROVIDER: S-EPMC10382400 | biostudies-literature | 2023 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparison of bone microstructure and strength in the distal radius and tibia between the different types of primary hypertrophic osteoarthropathy: an HR-pQCT study.

Pang Qianqian Q   Xu Yuping Y   Liao Ruoxi R   Li Ye Y   Zhang Li L   Chi Yue Y   Qi Xuan X   Li Mei M   Jiang Yan Y   Wang Ou O   Xing Xiaoping X   Qin Ling L   Xia Weibo W  

Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 20230518 8


Primary hypertrophic osteoarthropathy (PHO) is a hereditary bone disease that is grouped into PHO autosomal recessive 1 (PHOAR1) and PHO autosomal recessive 2 (PHOAR2) due to different causative genes. Data comparing bone microstructure between the two subtypes are scarce. This is the first study to find that PHOAR1 patients had inferior bone microstructure compared with PHOAR2 patients.<h4>Purpose</h4>The primary goal of this study was to assess bone microarchitecture and strength in PHOAR1 and  ...[more]

Similar Datasets

| S-EPMC8934267 | biostudies-literature
| S-EPMC4041600 | biostudies-literature
| S-EPMC5413370 | biostudies-literature
| S-EPMC4079304 | biostudies-literature
| S-EPMC3895089 | biostudies-other
| S-EPMC8261728 | biostudies-literature
| S-EPMC7994725 | biostudies-literature
| S-EPMC10506229 | biostudies-literature
| S-EPMC9792292 | biostudies-literature
| S-EPMC5026666 | biostudies-literature