Project description:CAR T cells have shown clinical efficacy for acute lymphoblastic leukemia, but this therapy has not been effective for acute myeloid leukemia (AML), and other treatment options are needed. Theoretically, CAR-NK cells have a more favorable toxicity profile compared to CAR T cells, especially in avoiding adverse effects such as cytokine release syndrome. However, the clinical evidence for this has not yet been reported. In the current study, we tested the safety of CD33-CAR NK cells in patients with relapsed and refractory AML. At doses up to 5 × 109 (5 billion) cells per patient, no significant adverse effects were observed. CAR NK-92 cells can be produced at much lower cost compared to CAR T cells, and we believe after being optimized, they will be widely accessible for the treatment of cancer.
Project description:Objective: To investigate the safety and efficacy of allogeneic CAR-T cells in the treatment of relapsed/refractory multiple myeloma (RRMM) . Methods: CAR-T cells were prepared from peripheral blood lymphocytes of HLA mismatch healthy donors. Median age was 55 (48-60) . Allogeneic cells were derived from 3 HLA haploidentical donors and 1 HLA completely mismatch unrelated donor. Four patients with RRMM were conditioned with FC regimen followed by CAR-T cell transfusion. They were infused into CART-19 (1×10(7)/kg on day 0) and (4.0-6.8) ×10(7)/kg CART-BCMA cells as split-dose infusions (40% on day 1 and 60% on day 2) . The adverse reactions and clinical efficacy were observed during follow-up after infusion, and the amplification and duration of CAR-T cells in vivo were monitored by PCR technique. Results: CAR-T cells were successfully infused in 3 of the 4 RRMM patients according to the study plan, and the infusion in one patient was delayed by 1 day due to high fever and elevated creatinine levels on day 3. The side effects included hematological and non-hematological toxicity, grade 3 hematological toxicity in 2 patients, grade 3 CRS in 1 one, grade 1 CRES in 1 one, prolonged APTT in 3 ones, tumor lysis syndrome in 1 one, mixed chimerism detected STR and clinical GVHD manifestation in 1 one. According to the efficacy criterias of IMWG, 2 patients acquired PR, 1 MR, and 1 SD respectively. Progression-free survival was 4 (3-5) weeks and overall survival was 63 (3-81) weeks. CAR T cells were amplified 2.2 (2-14) times in the patients with a median survival time of 10 (8-36) days. Conclusions: Small sample studies suggested that GVHD may be present in the treatment of RRMM with allogeneic CAR-T cells. There were early clinical transient events after transfusion. Low amplification and short duration of CAR-T cells in vivo may be the main factors affecting the efficacy.
Project description:Chimeric antigen receptor (CAR)-T cell therapy against T cell malignancies faces major challenges including fratricide between CAR-T cells and product contamination from the blasts. Allogeneic CAR-T cells, generated from healthy donor T cells, can provide ready-to-use, blast-free therapeutic products, but their application could be complicated by graft-versus-host disease (GvHD) and host rejection. Here we developed healthy donor-derived, CD7-targeting CAR-T cells (RD13-01) with genetic modifications to resist fratricide, GvHD and allogeneic rejection, as well as to potentiate antitumor function. A phase I clinical trial (NCT04538599) was conducted with twelve patients recruited (eleven with T cell leukemia/lymphoma, and one with CD7-expressing acute myeloid leukemia). All patients achieved pre-set end points and eleven proceeded to efficacy evaluation. No dose-limiting toxicity, GvHD, immune effector cell-associated neurotoxicity or severe cytokine release syndrome (grade ≥ 3) were observed. 28 days post infusion, 81.8% of patients (9/11) showed objective responses and the complete response rate was 63.6% (7/11, including the patient with AML). 3 of the responding patients were bridged to allogeneic hematopoietic stem cell transplantation. With a median follow-up of 10.5 months, 4 patients remained in complete remission. Cytomegalovirus (CMV) and/or Epstein-Barr virus (EBV) reactivation was observed in several patients, and one died from EBV-associated diffuse large B-cell lymphoma (DLBCL). Expansion of CD7-negative normal T cells was detected post infusion. In summary, we present the first report of a Phase I clinical trial using healthy donor-derived CD7-targeting allogeneic CAR-T cells to treat CD7+ hematological malignancies. Our results demonstrated the encouraging safety and efficacy profiles of the RD13-01 allogeneic CAR-T cells for CD7+ tumors.
Project description:Chimeric antigen receptor-T (CAR-T) therapy remains to be investigated in T-cell malignancies. CD7 is an ideal target for T-cell malignancies but is also expressed on normal T cells, which may cause CAR-T cell fratricide. Donor-derived anti-CD7 CAR-T cells using endoplasmic reticulum retention have shown efficacy in patients with T-cell acute lymphoblastic leukemia (ALL). Here we launched a phase I trial to explore differences between autologous and allogeneic anti-CD7 CAR-T therapies in T-cell ALL and lymphoma. Ten patients were treated and 5 received autologous CAR-T therapies. No dose-limiting toxicity or neurotoxicity was observed. Grade 1-2 cytokine release syndrome occurred in 7 patients, and grade 3 in 1 patient. Grade 1-2 graft-versus-host diseases were observed in 2 patients. Seven patients had bone marrow infiltration, and 100% of them achieved complete remission with negative minimal residual disease within one month. Two-fifths of patients achieved extramedullary or extranodular remission. The median follow-up was 6 (range, 2.7-14) months and bridging transplantation was not administrated. Patients treated with allogeneic CAR-T cells had higher remission rate, less recurrence and more durable CAR-T survival than those receiving autologous products. Allogeneic CAR-T cells appeared to be a better option for patients with T-cell malignancies.
Project description:Chimeric antigen receptor-T (CAR-T) therapy remains to be investigated in T-cell malignancies. CD7 is an ideal target for T-cell malignancies but is also expressed on normal T cells, which may cause CAR-T cell fratricide. Donor-derived anti-CD7 CAR-T cells using endoplasmic reticulum retention have shown efficacy in patients with T-cell acute lymphoblastic leukemia (ALL). Here we launched a phase I trial to explore differences between autologous and allogeneic anti-CD7 CAR-T therapies in T-cell ALL and lymphoma. Ten patients were treated and 5 received autologous CAR-T therapies. No dose-limiting toxicity or neurotoxicity was observed. Grade 1-2 cytokine release syndrome occurred in 7 patients, and grade 3 in 1 patient. Grade 1-2 graft-versus-host diseases were observed in 2 patients. Seven patients had bone marrow infiltration, and 100% of them achieved complete remission with negative minimal residual disease within one month. Two-fifths of patients achieved extramedullary or extranodular remission. The median follow-up was 6 (range, 2.7- 14) months and bridging transplantation was not administrated. Patients treated with allogeneic CAR-T cells had higher remission rate, less recurrence and more durable CAR-T survival than those receiving autologous products. Allogeneic CAR-T cells appeared to be a better option for patients with T-cell malignancies.
Project description:Cellular therapies have transformed the treatment of relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL), which typically does not respond well to salvage chemotherapy. Recently, approximately 40% of r/r DLBCL patients across three different trials achieved a complete remission at 1 year after receiving treatment with autologous chimeric antigen receptor (CAR) T cells (auto-CARs). These successes have prompted studies of auto-CARs in second-line settings, in which axicabtagene ciloleucel and lisocabtagene maraleucel both showed improved event-free survival over autologous hematopoietic cell transplantation (AHCT). While encouraging, this data also highlights that 60% of patients relapse or progress following treatment with auto-CARs. Individual disease characteristics and logistical challenges of cell engineering also limit patients' eligibility for auto-CARs. Allogeneic CAR T cells (allo-CARs) may address some of these limitations as they may mitigate delays associated with auto-CARs, thereby reducing the need for bridging chemotherapies and increasing availability of cellular products for patients with aggressive lymphomas. By being sourced from healthy donors who have never been exposed to cytotoxic chemotherapy, allo-CARs can be created from T cells with better fitness. Allo-CARs made from specific cellular subsets (e.g., stem cell memory or naïve/early memory T cells) may also have increased efficacy and long-term persistence. Additionally, allo-CARs have been successfully created from other cell types, including natural killer cells, gamma-delta T-cells and induced pluripotent stem cells. These cell types can be engineered to target viral antigens, enabling precision targeting of virally driven DLBCL. As allogeneic donor cells can be banked and cryopreserved in batches, they can be made more readily available, potentially reducing logistical hurdles and costs compared to engineering auto-CARs. This may ultimately create a more sustainable platform for cell therapies. Challenges with allo-CARs that will need to be addressed include graft versus host disease, alloimmunization, potentially decreased persistence relative to auto-CARs, and antigen escape. In short, the adaptability of allo-CARs makes them ideal for treating patients with r/r DLBCL who have progressed through standard chemotherapy, AHCT, or auto-CARs. Here, we review the published literature on patients with r/r DLBCL treated with allogeneic CAR products manufactured from various cell types as well as forthcoming allogeneic CAR technologies.
Project description:Adoptive cell therapy has received a great deal of interest in the treatment of advanced cancers that are resistant to traditional therapy. The tremendous success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells in the treatment of cancer, especially hematological cancers, has exposed CAR's potential. However, the toxicity and significant limitations of CAR-T cell immunotherapy prompted research into other immune cells as potential candidates for CAR engineering. NK cells are a major component of the innate immune system, especially for tumor immunosurveillance. They have a higher propensity for immunotherapy in hematologic malignancies because they can detect and eliminate cancerous cells more effectively. In comparison to CAR-T cells, CAR-NK cells can be prepared from allogeneic donors and are safer with a lower chance of cytokine release syndrome and graft-versus-host disease, as well as being a more efficient antitumor activity with high efficiency for off-the-shelf production. Moreover, CAR-NK cells may be modified to target various antigens while also increasing their expansion and survival in vivo. Extensive preclinical research has shown that NK cells can be effectively engineered to express CARs with substantial cytotoxic activity against both hematological and solid tumors, establishing evidence for potential clinical trials of CAR-NK cells. In this review, we discuss recent advances in CAR-NK cell engineering in a variety of hematological malignancies, as well as the main challenges that influence the outcomes of CAR-NK cell-based tumor immunotherapies.
Project description:Vα24-invariant natural killer T cells (NKTs) have antitumor properties that can be enhanced by transgenic expression of tumor-specific receptors. Here, we report the results of the first-in-human clinical evaluation of autologous NKTs co-expressing a GD2-specific chimeric antigen receptor with interleukin (IL)15 (GD2-CAR.15) in 12 children with neuroblastoma (NB) treated on four dose levels (NCT03294954). Objectives included assessing safety, antitumor activity, and immune response. No dose-limiting toxicities occurred, and one patient had grade 2 cytokine release syndrome resolved by tocilizumab. The overall response rate was 25% (3/12) and disease control rate was 58% (7/12) including four patients with stable disease, two partial responses, and one complete response. CD62L+ NKT frequency in infused products correlated with CAR-NKT expansion in patients and was higher in responders than non-responders (71% vs 35.3%, p=0.002). Singe-cell RNA sequencing analysis identified B cell translocation gene 1 (BTG1) as one of the top upregulated genes in GD2-CAR.15-NKTs after in vitro serial tumor challenge. Genetic gain- and loss-of-function experiments revealed that BTG1 is a key driver of hyporesponsiveness in exhausted NKT and T cells. Crucially, NKTs co-expressing GD2-CAR.15 and BTG1-specific shRNA eradicated metastatic NB in mice. These results indicate that CAR-NKTs are safe, produce objective responses in NB patients, and that targeting BTG1 can enhance their therapeutic potency.
Project description:PurposeAZD5991, a human MCL-1 inhibitor, was assessed for safety, tolerability, pharmacokinetics, and antitumor activity as monotherapy and in combination with venetoclax in patients with relapsed or refractory hematologic malignancies.Patients and methodsIn the monotherapy cohort (n = 61), patients with hematologic malignancies received AZD5991 intravenously in escalating doses either once or twice weekly, following intrapatient dose escalation, during a 3-week cycle. In the combination cohort (n = 17), patients with acute myeloid leukemia and myelodysplastic syndrome received escalating doses of AZD5991 and venetoclax during either a 3- or 4-week cycle. Primary objectives were safety and maximum tolerated dose; secondary objectives included plasma pharmacokinetics and antitumor activity.ResultsThe most common (≥30%) adverse events were diarrhea (59.0%), nausea (55.1%), and vomiting (47.4%). Four deaths occurred because of adverse events: cardiac arrest, sepsis, tumor lysis syndrome, and acute respiratory failure; only tumor lysis syndrome was related to AZD5991. Dose-limiting toxicities occurred in five patients. Three patients with myelodysplastic syndrome achieved an objective response: one marrow complete remission without hematologic improvement, one partial remission with AZD5991 monotherapy, and one marrow complete remission with AZD5991 + venetoclax. Asymptomatic elevations of troponin I or T were observed in eight (10.3%) patients. Post hoc retrospective analysis revealed elevated troponin T in 14/31 patients before any AZD5991 dose and in 54/65 patients after any AZD5991 dose at or after Cycle 1. No associations were found between elevated troponin and cardiovascular risk factors.ConclusionsTreatment with AZD5991 was associated with high incidence of laboratory troponin elevation and a low overall response rate.