Project description:Fourteen different Pleurotus ostreatus cultivars (Po_1-Po_14) were tested for free amino acid content (fAA), total polyphenol content (TPC), and antioxidant capacity (Ferric Reducing Ability of Plasma-FRAP) to select the cultivars with the most favorable traits. Automatic amino acid analyzer (fAA) and spectrophotometric assay (TPC, FRAP) results as well as Fourier-transform near infrared (FT-NIR) spectra were evaluated with different chemometric methods (Kruskal-Wallis test, Principal Component Analysis-PCA, Linear Discriminant Analysis-LDA). Based on total free amino acid concentrations and FRAP values, the Po_2 cultivar was found to be the most favorable. Types Po_3, Po_8, Po_10 and Po_12 were separated using PCA. Based on the spectral profile, they may contain polyphenols and reducing compounds of different qualities. LDA classification that was based on the concentrations of all free amino acids, cysteine, and proline of the cultivars was performed with an accuracy of over 90%. LDA classification that was based on the TPC and FRAP values was performed with an accuracy of over 83%.
Project description:A predictive model utilizing near-infrared spectroscopy was developed to estimate the loss on drying, total contents of crocin I and crocin II, and picrocrocin content of saffron. Initially, the LD values were determined using a moisture-ash analyzer, while HPLC was employed for measuring the total contents of crocin I, crocin II, and picrocrocin. The near-infrared spectra of 928 saffron samples were collected and preprocessed using first derivative, standard normal variable transformation, detrended correction, multivariate scattering correction, Savitzky-Golay smoothing, and mean centering methods. Leveraging the partial least squares method, regression models were constructed, with parameters optimized through a selective combination of the above six preprocessing methods. Subsequently, prediction models for loss on drying, total contents of crocin I and crocin II, and picrocrocin content were established, and the prediction accuracy of the models was verified. The correlation coefficients and root mean square error of loss on drying, total contents of crocin I and crocin II, and picrocrocin content demonstrated high accuracy, with R2 values of 0.8627, 0.8851, and 0.8592 and root mean square error values of 0.0260, 0.0682, and 0.0465. This near-infrared prediction model established in the present study offers a precise and efficient means of assessing loss on drying, total contents of crocin I and crocin II, and picrocrocin content in saffron and is useful for the development of a rapid quality evaluation system.
Project description:The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.
Project description:Due to a boom in the dairy industry in Northeast China, the hay industry has been developing rapidly. Thus, it is very important to evaluate the hay quality with a rapid and accurate method. In this research, a novel technique that combines near infrared spectroscopy (NIRs) with three different statistical analyses (MLR, PCR and PLS) was used to predict the chemical quality of sheepgrass (Leymus chinensis) in Heilongjiang Province, China including the concentrations of crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF). Firstly, the linear partial least squares regression (PLS) was performed on the spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the MLR evaluation method for CP has a potential to be used for industry requirements, as it needs less sophisticated and cheaper instrumentation using only a few wavelengths. Results show that in terms of CP, ADF and NDF, (i) the prediction accuracy in terms of CP, ADF and NDF using PLS was obviously improved compared to the PCR algorithm, and comparable or even better than results generated using the MLR algorithm; (ii) the predictions were worse compared to laboratory-based spectra with the MLR algorithmin, and poor predictions were obtained (R2, 0.62, RPD, 0.9) using MLR in terms of NDF; (iii) a satisfactory accuracy with R2 and RPD by PLS method of 0.91, 3.2 for CP, 0.89, 3.1 for ADF and 0.88, 3.0 for NDF, respectively, was obtained. Our results highlight the use of the combined NIRs-PLS method could be applied as a valuable technique to rapidly and accurately evaluate the quality of sheepgrass hay.
Project description:The lack of an efficient approach for quality evaluation of sweet potatoes significantly hinders progress in quality breeding. Therefore, this study aimed to establish a near-infrared spectroscopy (NIRS) assay for high-throughput analysis of sweet potato root quality, including total starch, amylose, amylopectin, the ratio of amylopectin to amylose, soluble sugar, crude protein, total flavonoid content, and total phenolic content. A total of 125 representative samples were utilized and a dual-optimized strategy (optimization of sample subset partitioning and variable selection) was applied to NIRS modeling. Eight optimal equations were developed with an excellent coefficient of determination for the calibration (R2C) at 0.95-0.99, cross-validation (R2CV) at 0.93-0.98, external validation (R2V) at 0.89-0.96, and the ratio of prediction to deviation (RPD) at 6.33-11.35. Overall, these NIRS models provide a feasible approach for high-throughput analysis of root quality and permit large-scale screening of elite germplasm in future sweet potato breeding.
Project description:Determining cocoa bean quality is crucial for many players in the international supply chain. However, actual methods rely on a cut test protocol, which is limited by its subjective nature, or on time-consuming, expensive and destructive wet-chemistry laboratory procedures. In this context, the application of near infrared (NIR) spectroscopy, particularly with the recent developments of portable NIR spectrometers, may represent a valuable solution for providing a cocoa beans' quality profile, in a rapid, non-destructive, and reliable way. Monitored parameters in this work were dry matter (DM), ash, shell, fat, protein, total polyphenols, fermentation index (FI), titratable acidity (TA) and pH. Different chemometric analyses were performed on the spectral data and calibration models were developed using modified partial least squares regression. Prediction equations were validated using a fivefold cross-validation and a comparison between the different prediction performances for the portable and benchtop NIR spectrometers was provided. The NIRS benchtop instrument provided better performance of quantification considering the whole than the portable device, showing excellent prediction capability in protein and DM quantification. On the other hand, the NIRS portable device, although showing lower but valuable performance of prediction, can represent an appealing alternative to benchtop instruments for food business operators, being applicable in the field.
Project description:Determining and applying 'good' postharvest and quality control practices for otherwise highly sensitive fruits, such as sour cherry, is critical, as they serve as excellent media for a wide variety of microbial contaminants. The objective of this research was to report two series of experiments on the modified atmosphere storage (MAP) of sour cherries (Prunus cerasus L. var. Kántorjánosi, Újfehértói fürtös). Firstly, the significant effect of different washing pre-treatments on various quality indices was examined (i.e., headspace gas composition, weight loss, decay rate, color, firmness, soluble solid content, total plate count) in MAP-packed fruits. Subsequently, the applicability of near infrared (NIR) spectroscopy combined with chemometrics was investigated to detect the effect of various storage conditions (packed as control or MAP, stored at 3 or 5 °C) on sour cherries of different perceived ripeness. Significant differences were found for oxygen concentration when two perforations were applied on the packages of 'Kántorjánosi' (p < 0.01); weight loss when 'Kánorjánosi' (p < 0.001) and 'Újfehértói fürtös' (p < 0.01) were packed in MAP; SSC when 'Újfehértói fürtös' samples were ozone-treated (p < 0.05); and total plate count when 'Kántorjánosi' samples were ozone-treated (p < 0.01). The difference spectra reflected the high variability in the samples, and the detectable effects of different packaging. Based on the investigations with the soft independent modelling of class analogies (SIMCA), different packaging and storage resulted in significant differences in most of the cases even on the first storage day, which in many cases increased by the end of storage. The soft independent modelling of class analogies proved to be suitable for classification with apparent error rates between 0 and 0.5 during prediction regardless of ripeness. The research findings suggest the further correlation of NIR spectroscopic and reference parameters to support postharvest handling and fast quality control.
Project description:Near-infrared spectroscopy (NIRS) and closed spectroscopy methods have been applied to analyse the quality of forage and animal feed. However, grasslands are linked to variability factors (e.g., site, year, occurring species, etc.) which restrict the prediction capacity of the NIRS. The aim of this study is to test the Fourier transform NIRS application in order to determine the chemical characteristics of fresh, undried and unground samples of grassland located in north-central Apennine. The results indicated the success of FT-NIRS models for dry matter (DM), crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF) and acid detergent lignin (ADL) on fresh grassland samples (R2 > 0.90, in validation). The model can be used to quantitatively determine CP and ADF (residual prediction deviation-RPD > 3 and range error ratio- RER > 10), followed by DM and NDF that maintain a RER > 10, and are sufficient for screening for the lignin fraction (RPD = 2.4 and RER = 8.8). On the contrary, models for both lipid and ash seem not to be usable at a practical level. The success of FT-NIRS quantification for the main chemical parameters is promising from the practical point of view considering both the absence of samples preparation and the importance of these parameters for diet formulation.
Project description:The main objectives of this study were to evaluate the prediction performance of genomic and near-infrared spectroscopy (NIR) data and whether the integration of genomic and NIR predictor variables can increase the prediction accuracy of two feedstock quality traits (fiber and sucrose content) in a sugarcane population (Saccharum spp.). The following three modeling strategies were compared: M1 (genome-based prediction), M2 (NIR-based prediction), and M3 (integration of genomics and NIR wavenumbers). Data were collected from a commercial population comprised of three hundred and eighty-five individuals, genotyped for single nucleotide polymorphisms and screened using NIR spectroscopy. We compared partial least squares (PLS) and BayesB regression methods to estimate marker and wavenumber effects. In order to assess model performance, we employed random sub-sampling cross-validation to calculate the mean Pearson correlation coefficient between observed and predicted values. Our results showed that models fitted using BayesB were more predictive than PLS models. We found that NIR (M2) provided the highest prediction accuracy, whereas genomics (M1) presented the lowest predictive ability, regardless of the measured traits and regression methods used. The integration of predictors derived from NIR spectroscopy and genomics into a single model (M3) did not significantly improve the prediction accuracy for the two traits evaluated. These findings suggest that NIR-based prediction can be an effective strategy for predicting the genetic merit of sugarcane clones.
Project description:The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.