Project description:Stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (HFSRT) have become important treatment modalities for brain metastases. While effective, there are still areas of extensive debate on its appropriate use in patients with life-limiting diseases. This review provides an overview of the indications and challenges of SRS and HFSRT in the management of brain metastases.
Project description:Introduction:Due to the neurocognitive side effects of whole brain radiation therapy (WBRT), stereotactic radiosurgery (SRS) is being used with increasing frequency. The use of SRS is expanding for patients with multiple (>4) brain metastases (BM). This study summarizes our institutional experience with single-fraction, linear-accelerator-based SRS for multiple BM. Methods and materials:All patients who were treated between January 1, 2013, and September 30, 2015, with single-fraction SRS for ?4 BM were included in this institutional review board-approved, retrospective, single-institution study. Patients were treated with linear accelerator-based image guided SRS. Results:A total of 59 patients with ?4 BM were treated with single-fraction SRS. The median follow-up was 15.2 months, and the median overall survival for the entire cohort was 5.8 months. The median number of treated lesions per patient was 5 (range, 4-23). Per patient, the median planning target volume (PTV) was 4.8?cc (range, 0.7-28.8?cc). The prescribed dose across all 380 BM for the 59 patients ranged from 7 to 20?Gy. The median of the mean dose to the total PTV was 19.5?Gy. Although the number of treated lesions (4-5 vs ?6) did not influence survival, better survival was noted for a total PTV <10?cc versus ?10?cc (7.1 vs 4.2 months, respectively; P?=?.0001). A mean dose of ?19?Gy to the entire PTV was also associated with increased survival (6.6 vs 5.0 months, respectively; P?=?.0172). Patients receiving a dose of >12?Gy to ?10?cc of normal brain had worse survival (5.1 vs 8.6 months, respectively; P?=?.0028). Conclusion:In single-fraction SRS for patients with multiple BM, smaller total tumor volume, higher total dose, and lower volume of normal brain receiving >12?Gy were associated with increased survival. These data suggest that using SRS for the treatment of multiple BM is efficacious and that outcomes may be affected more by total tumor volume than by the number of lesions.
Project description:BackgroundStereotactic radiosurgery (SRS) is a frequently chosen treatment for patients with brain metastases and the number of long-term survivors is increasing. Brain necrosis (e.g. radionecrosis) is the most important long-term side effect of the treatment. Retrospective studies show a lower risk of radionecrosis and local tumor recurrence after fractionated stereotactic radiosurgery (fSRS, e.g. five fractions) compared with stereotactic radiosurgery in one or three fractions. This is especially true for patients with large brain metastases. As such, the 2022 ASTRO guideline of radiotherapy for brain metastases recommends more research to fSRS to reduce the risk of radionecrosis. This multicenter prospective randomized study aims to determine whether the incidence of adverse local events (either local failure or radionecrosis) can be reduced using fSRS versus SRS in one or three fractions in patients with brain metastases.MethodsPatients are eligible with one or more brain metastases from a solid primary tumor, age of 18 years or older, and a Karnofsky Performance Status ≥ 70. Exclusion criteria include patients with small cell lung cancer, germinoma or lymphoma, leptomeningeal metastases, a contraindication for MRI, prior inclusion in this study, prior surgery for brain metastases, prior radiotherapy for the same brain metastases (in-field re-irradiation). Participants will be randomized between SRS with a dose of 15-24 Gy in 1 or 3 fractions (standard arm) or fSRS 35 Gy in five fractions (experimental arm). The primary endpoint is the incidence of a local adverse event (local tumor failure or radionecrosis identified on MRI scans) at two years after treatment. Secondary endpoints are salvage treatment and the use of corticosteroids, bevacizumab, or antiepileptic drugs, survival, distant brain recurrences, toxicity, and quality of life.DiscussionCurrently, limiting the risk of adverse events such as radionecrosis is a major challenge in the treatment of brain metastases. fSRS potentially reduces this risk of radionecrosis and local tumor failure.Trial registrationClincalTrials.gov, trial registration number: NCT05346367 , trial registration date: 26 April 2022.
Project description:Brain metastasis (BM) represents a common complication of cancer, and in the modern era requires multi-modal management approaches and multi-disciplinary care. Traditionally, due to the limited efficacy of cytotoxic chemotherapy, treatment strategies are focused on local treatments alone, such as whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and resection. However, the increased availability of molecular-based therapies with central nervous system (CNS) penetration now permits the individualized selection of tailored systemic therapies to be used alongside local treatments. Moreover, the introduction of immune checkpoint inhibitors (ICIs), with demonstrated CNS activity has further revolutionized the management of BM patients. The rapid introduction of these cancer therapeutics into clinical practice, however, has led to a significant dearth in the published literature about the optimal timing, sequencing, and combination of these systemic therapies along with SRS. This manuscript reviews the impact of tumor biology and molecular profiles on the management paradigm for BM patients and critically analyzes the current landscape of SRS, with a specific focus on integration with systemic therapy. We also discuss emerging treatment strategies combining SRS and ICIs, the impact of timing and the sequencing of these therapies around SRS, the effect of corticosteroids, and review post-treatment imaging findings, including pseudo-progression and radiation necrosis.
Project description:BackgroundBrain metastases (BM) pose a significant problem in patients with metastatic renal-cell carcinoma (mRCC). Local and systemic therapies including stereotactic radiosurgery (SRS) are rapidly evolving, necessitating reassessments of outcomes for modern patient management.Patients and methodsThe mRCC patients with BM treated with SRS were reviewed. Patient demographics, clinical history, and SRS treatment parameters were identified.ResultsAmong 268 patients with mRCC treated between 2006 and 2015, 38 patients were identified with BM. A total of 243 BM were treated with SRS with 1 to 26 BMs treated per SRS session (median, 2 BMs). The median (range) BM size was 0.6 (0.2-3.1) cm and median (range) SRS treatment dose was 18 (12-24) Gy. Treated BM local control rates at 1 and 2 years were 91.8% (95% confidence interval, 85.7-95.4) and 86.1% (95% confidence interval, 77.1-91.7), respectively. BM control declined for larger tumors. Survival after 1-year was 57.5% (95% CI 40.2-71.4) for all patients. Survival was not statistically different between patients with < 5 BM versus ≥ 5 BM. Survival was prognostic based on International Metastatic Renal Cell Carcinoma Database (IMDC) risk groups in patients with < 5 BM. Two patients experienced grade 3 radiation necrosis requiring surgical intervention.ConclusionSRS is effective in controlling BM in patients with mRCC. Over half of treated patients survive past a year, and no differences in survival were noted in patients with > 5 metastases. Prognostic risk categories based on systemic disease (IMDC) are predictive of survival in this BM population, with limited rates of symptomatic radiation necrosis.
Project description:Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation in a highly conformal manner, which allows for significant sparing of nearby healthy tissues. It is typically delivered in 1-5 sessions and has demonstrated safety and efficacy across multiple intracranial neoplasms and functional disorders. In the setting of brain metastases, postoperative and definitive SRS has demonstrated favorable rates of tumor control and improved cognitive preservation compared to conventional whole brain radiation therapy. However, the risk of local failure and treatment-related complications (e.g. radiation necrosis) markedly increases with larger postoperative treatment volumes. Additionally, the risk of leptomeningeal disease is significantly higher in patients treated with postoperative SRS. In the setting of high grade glioma, preclinical reports have suggested that preoperative SRS may enhance anti-tumor immunity as compared to postoperative radiotherapy. In addition to potentially permitting smaller target volumes, tissue analysis may permit characterization of DNA repair pathways and tumor microenvironment changes in response to SRS, which may be used to further tailor therapy and identify novel therapeutic targets. Building on the work from preoperative SRS for brain metastases and preclinical work for high grade gliomas, further exploration of this treatment paradigm in the latter is warranted. Presently, there are prospective early phase clinical trials underway investigating the role of preoperative SRS in the management of high grade gliomas. In the forthcoming sections, we review the biologic rationale for preoperative SRS, as well as pertinent preclinical and clinical data, including ongoing and planned prospective clinical trials.
Project description:Brain metastases traditionally carried a poor prognosis with an overall survival of weeks to months in the absence of treatment. Radiation therapy modalities include whole brain radiation therapy (WBRT) and stereotactic radiosurgery (SRS). WBRT delivers a relatively low dose of radiation, has neurocognitive sequelae, and has not been investigated for its immunostimulatory effects. Furthermore, WBRT exposes the entire intracranial tumor immune microenvironment to radiation. SRS delivers a high dose of conformal radiation with image guidance to minimize dose to surrounding normal brain tissue, and appears to promote anti-tumor immunity. In parallel with many of these discoveries, immune checkpoint inhibitors (ICIs) have demonstrated a survival advantage in multiple malignancies commonly associated with brain metastases (e.g., melanoma). Combination SRS and ICI are theorized to be synergistic in anti-tumor immunity directed to brain metastases. The purpose of this review is to explore the synergy of SRS and ICIs, including pre-clinical data, existing clinical data, and ongoing prospective trials.
Project description:For patients presenting with brain metastases, two methods of radiation treatment currently exist: stereotactic radiosurgery (SRS) and whole-brain radiation therapy (WBRT). SRS is a minimally invasive to noninvasive technique that delivers a high dose of ionizing radiation to a precisely defined focal target volume, whereas WBRT involves multiple smaller doses of radiation delivered to the whole brain. Evidence exists from randomized controlled trials for SRS in the treatment of patients with one to four brain metastases. Patients with more than four brain metastases generally receive WBRT, which can effectively treat undetected metastases and protect against intracranial relapse. However, WBRT has been associated with an increased potential for toxic neurocognitive side effects, including memory loss and early dementia, and does not provide 100% protection against relapse. For this reason, physicians at many medical centers are opting to use SRS as first-line treatment for patients with more than four brain metastases, despite evidence showing an increased rate of intracranial relapse compared with WBRT. In light of the evolving use of SRS, this review will examine the available reports on institutional trials and outcomes for patients with more than four brain metastases treated with SRS alone as first-line therapy.
Project description:Background and purposeCranial irradiation is associated with significant neurocognitive sequelae, secondary to radiation-induced damage to hippocampal cells. It has been shown that hippocampal-sparing (HS) leads to modest benefit in neurocognitive function in patients with brain metastases, but further improvement is possible. We hypothesized that improved benefits could be seen using HS in patients treated with stereotactic radiation (HS-SRS). Our study evaluated whether the hippocampal dose could be significantly reduced in the treatment of brain metastases using SRS, while maintaining target coverage.Materials and methodsSixty SRS plans were re-planned to minimize dose to the hippocampus while maintaining target coverage. Patients with metastases within 5 mm of the hippocampus were excluded. Minimum, mean, maximum and dose to 40% (mean equivalent dose in 2 Gy per fraction, EQD2 to the hippocampus) were compared between SRS and HS-SRS plans. Median number of brain metastases was two.ResultsCompared to baseline SRS plans, hippocampal-sparing plans demonstrated Dmin was reduced by 35%, from 0.4 Gy to 0.3 Gy (p-value 0.02). Similarly, Dmax was reduced by 55%, from 8.2 Gy to 3.6 Gy, Dmean by 52%, from 1.6 Gy to 0.5 Gy, and D40 by 50%, from 1.8 Gy to 0.9 Gy (p-values <0.001).ConclusionsOur study demonstrated that further reduction of hippocampal doses of more than 50% is possible in the treatment of brain metastases with SRS using dose optimization. This could result in significantly improved neurocognitive outcomes for patients treated for brain metastases.