Unknown

Dataset Information

0

Fast Approximate Quantification of Endovascular Stent Graft Displacement Forces in the Bovine Aortic Arch Variant.


ABSTRACT:

Purpose

Displacement forces (DFs) identify hostile landing zones for stent graft deployment in thoracic endovascular aortic repair (TEVAR). However, their use in TEVAR planning is hampered by the need for time-expensive computational fluid dynamics (CFD). We propose a novel fast-approximate computation of DFs merely exploiting aortic arch anatomy, as derived from the computed tomography (CT) and a measure of central aortic pressure.

Materials and methods

We tested the fast-approximate approach against CFD gold-standard in 34 subjects with the "bovine" aortic arch variant. For each dataset, a 3-dimensional (3D) model of the aortic arch lumen was reconstructed from computed tomography angiography and CFD then employed to compute DFs within the aortic proximal landing zones. To quantify fast-approximate DFs, the wall shear stress contribution to the DF was neglected and blood pressure space-distribution was averaged on the entire aortic wall to reliably approximate the patient-specific central blood pressure. Also, DF values were normalized on the corresponding proximal landing zone area to obtain the equivalent surface traction (EST).

Results

Fast-approximate approach consistently reflected (r2=0.99, p<0.0001) the DF pattern obtained by CFD, with a -1.1% and 0.7° bias in DFs magnitude and orientation, respectively. The normalized EST progressively increased (p<0.0001) from zone 0 to zone 3 regardless of the type of arch, with proximal landing zone 3 showing significantly greater forces than zone 2 (p<0.0001). Upon DF normalization to the corresponding aortic surface, fast-approximate EST was decoupled in blood pressure and a dimensionless shape vector (S) reflecting aortic arch morphology. S showed a zone-specific pattern of orientation and proved a valid biomechanical blueprint of DF impact on the thoracic aortic wall.

Conclusion

Requiring only a few seconds and quantifying clinically relevant biomechanical parameters of proximal landing zones for arch TEVAR, our method suits the real preoperative decision-making process. It paves the way toward analyzing large population of patients and hence to define threshold values for a future patient-specific preoperative TEVAR planning.

SUBMITTER: Sturla F 

PROVIDER: S-EPMC10503258 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fast Approximate Quantification of Endovascular Stent Graft Displacement Forces in the Bovine Aortic Arch Variant.

Sturla Francesco F   Caimi Alessandro A   Romarowski Rodrigo M RM   Nano Giovanni G   Glauber Mattia M   Redaelli Alberto A   Votta Emiliano E   Marrocco-Trischitta Massimiliano M MM  

Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists 20220519 5


<h4>Purpose</h4>Displacement forces (<b><i>DF</i></b>s) identify hostile landing zones for stent graft deployment in thoracic endovascular aortic repair (TEVAR). However, their use in TEVAR planning is hampered by the need for time-expensive computational fluid dynamics (CFD). We propose a novel fast-approximate computation of <b><i>DF</i></b>s merely exploiting aortic arch anatomy, as derived from the computed tomography (CT) and a measure of central aortic pressure.<h4>Materials and methods</h  ...[more]

Similar Datasets

| S-EPMC9685361 | biostudies-literature
| S-EPMC9960472 | biostudies-literature
| S-EPMC9628377 | biostudies-literature
| S-EPMC10228724 | biostudies-literature
| S-EPMC5056233 | biostudies-literature
| S-EPMC6828830 | biostudies-literature
| S-EPMC10415614 | biostudies-literature